Содержание

Устройство и принцип работы гидроаккумулятора

Интернет-магазин «Водомастер.ру» ценит доверие своих клиентов и заботится о сохранении их личных (персональных) данных в тайне от мошенников и третьих лиц. Политика конфиденциальности разработана для того, чтобы личная информация, предоставленная пользователями, были защищены от доступа третьих лиц.

Основная цель сбора личных (персональных) данных – обеспечение надлежащей защиты информации о Пользователе, в т.ч. его персональных данных от несанкционированного доступа и разглашения третьим лицам, улучшение качества обслуживания и эффективности взаимодействия с клиентом.

1. ОСНОВНЫЕ ПОНЯТИЯ

Сайт – интернет магазин «Водомастер.ру», расположенный в сети Интернет по адресу: vodomaster.ru

Пользователь – физическое или юридическое лицо, разместившее свою персональную информацию посредством любой Формы обратной связи на сайте с последующей целью передачи данных Администрации Сайта.

Форма обратной связи – специальная форма, где Пользователь размещает свою персональную информацию с целью передачи данных Администрации Сайта.

Аккаунт пользователя (Аккаунт) – учетная запись Пользователя позволяющая идентифицировать (авторизовать) Пользователя посредством уникального логина и пароля. Логин и пароль для доступа к Аккаунту определяются Пользователем самостоятельно при регистрации.

2. ОБЩИЕ ПОЛОЖЕНИЯ

2.1. Настоящая Политика в отношении обработки персональных данных (далее – «Политика») подготовлена в соответствии с п. 2 ч .1 ст. 18.1 Федерального закона Российской Федерации «О персональных данных» №152-ФЗ от 27 июля 2006 года (далее – «Закон») и описывает методы использования и хранения интернет-магазином «Водомастер.ру» конфиденциальной информации пользователей, посещающих сайт vodomaster.ru.

2.2. Предоставляя интернет-магазину «Водомастер.ру» информацию частного характера через Сайт, Пользователь свободно, своей волей дает согласие на передачу, использование и раскрытие его персональных данных согласно условиям настоящей Политики конфиденциальности.

2.3. Настоящая Политика конфиденциальности применяется только в отношении информации частного характера, полученной через Сайт. Информация частного характера – это информация, позволяющая при ее использовании отдельно или в комбинации с другой доступной интернет-магазину информацией идентифицировать персональные данные клиента.

2.4. На сайте vodomaster.ru могут иметься ссылки, позволяющие перейти на другие сайты. Интернет-магазин не несет ответственности за сведения, публикуемые на этих сайтах, и предоставляет ссылки на них только в целях обеспечения удобства пользователей. При этом действие настоящей Политики не распространяется на иные сайты. Пользователям, переходящим по ссылкам на другие сайты, рекомендуется ознакомиться с политикой конфиденциальности, размещенной на таких сайтах.

3. УСЛОВИЯ, ЦЕЛИ СБОРА И ОБРАБОТКИ ПЕРСОНАЛЬНЫХ ДАННЫХ ПОЛЬЗОВАТЕЛЕЙ

3.1. Персональные данные Пользователя такие как: имя, фамилия, отчество, e-mail, телефон, адрес доставки, skype и др., передаются Пользователем Администрации Сайта с согласия Пользователя.

3.2. Передача персональных данных Пользователем через любую размещенную на сайте Форму обратной связи, в том числе через корзину заказов, означает согласие Пользователя на передачу его персональных данных.

3.3. Предоставляя свои персональные данные, Пользователь соглашается на их обработку (вплоть до отзыва Пользователем своего согласия на обработку его персональных данных), в целях исполнения интернет-магазином своих обязательств перед клиентом, продажи товаров и предоставления услуг, предоставления справочной информации, а также в целях продвижения товаров, работ и услуг, а также соглашается на получение сообщений рекламно-информационного характера и сервисных сообщений.

3.4. Основными целями сбора информации о Пользователе являются принятие, обработка и доставка заказа, осуществление обратной связи с клиентом, предоставление технической поддержки продаж, оповещение об изменениях в работе Сайта, предоставление, с согласия клиента, предложений и информации об акциях, поступлениях новинок, рекламных рассылок; регистрация Пользователя на Сайте (создание Аккаунта).

3.5. Регистрация Пользователя на сайте vodomaster.ru не является обязательной и осуществляется Пользователем на добровольной основе.

3.6. Интернет-магазин не несет ответственности за сведения, предоставленные Клиентом на Сайте в общедоступной форме.

4. ОБРАБОТКА, ХРАНЕНИЕ И ЗАЩИТА ПЕРСОНАЛЬНОЙ ИНФОРМАЦИИ ПОЛЬЗОВАТЕЛЕЙ САЙТА

4.1. Администрация Сайта осуществляет обработку информации о Пользователе, в т.ч. его персональных данных, таких как: имя, фамилия, отчество, e-mail, телефон, skype и др., а также дополнительной информации о Пользователе, предоставляемой им по своему желанию: организация, город, должность, и др.

4.2. Интернет-магазин вправе использовать технологию «cookies». «Cookies» не содержат конфиденциальную информацию и не передаются третьим лицам.

4.3. Интернет-магазин получает информацию об ip-адресе Пользователя сайта vodomaster.ru и сведения о том, по ссылке с какого интернет-сайта он пришел. Данная информация не используется для установления личности Пользователя.

4.4. При обработке персональных данных пользователей интернет-магазин придерживается следующих принципов:

  • Обработка информации осуществляется на законной и справедливой основе;
  • Информация не раскрываются третьим лицам и не распространяются без согласия субъекта Данных, за исключением случаев, требующих раскрытия информации по запросу уполномоченных государственных органов, судопроизводства;
  • Определение конкретных законных целей до начала обработки (в т.ч. сбора) информации;
  • Ведется сбор только той информации, которая является необходимой и достаточной для заявленной цели обработки;
  • Обработка информации ограничивается достижением конкретных, заранее определенных и законных целей;

4.5. Персональная информация о Пользователе хранятся на электронном носителе сайта бессрочно.

4.6. Персональная информация о Пользователе уничтожается при желании самого Пользователя на основании его официального обращения, либо по инициативе администратора Сайта без объяснения причин, путём удаления информации, размещённой Пользователем.

4.7. Обращение об удалении личной информации, направляемое Пользователем, должно содержать следующую информацию:

для физического лица:

  • номер основного документа, удостоверяющего личность Пользователя или его представителя;
  • сведения о дате выдачи указанного документа и выдавшем его органе;
  • дату регистрации через Форму обратной связи;
  • текст обращения в свободной форме;
  • подпись Пользователя или его представителя.

для юридического лица:

  • запрос в свободной форме на фирменном бланке;
  • дата регистрации через Форму обратной связи;
  • запрос должен быть подписан уполномоченным лицом с приложением документов, подтверждающих полномочия лица.

4.8. Интернет-магазин обязуется рассмотреть и направить ответ на поступившее обращение Пользователя в течение 30 дней с момента поступления обращения.

4.9. Интернет-магазин реализует мероприятия по защите личных (персональных) данных Пользователей в следующих направлениях:

  • предотвращение утечки информации, содержащей личные (персональные) данные, по техническим каналам связи и иными способами;
  • предотвращение несанкционированного доступа к информации, содержащей личные (персональные) данные, специальных воздействий на такую информацию (носителей информации) в целях ее добывания, уничтожения, искажения и блокирования доступа к ней;
  • защита от вредоносных программ;
  • обнаружение вторжений и компьютерных атак.

5. ПЕРЕДАЧА ПЕРСОНАЛЬНЫХ ДАННЫХ

5.1. Интернет-магазин «Водомастер.ру» не сообщает третьим лицам личную (персональную) информацию о Пользователях Сайта, кроме случаев, предписанных Федеральным законом от 27.07.2006 г. № 152-ФЗ «О персональных данных», или когда клиент добровольно соглашается на передачу информации.

5.2. Условия, при которых интернет-магазин «Водомастер.ру» может предоставить информацию частного характера из своих баз данных сторонним третьим лицам:

  • в целях удовлетворения требований, запросов или распоряжения суда;
  • в целях сотрудничества с правоохранительными, следственными или другими государственными органами. При этом интернет-магазин оставляет за собой право сообщать в государственные органы о любой противоправной деятельности без уведомления Пользователя об этом;
  • в целях предотвращения или расследования предполагаемого правонарушения, например, мошенничества или кражи идентификационных данных;

5.3. Интернет-магазин имеет право использовать другие компании и частных лиц для выполнения определенных видов работ, например: доставка посылок, почты и сообщений по электронной почте, удаление дублированной информации из списков клиентов, анализ данных, предоставление маркетинговых услуг, обработка платежей по кредитным картам. Эти юридические/физические лица имеют доступ к личной информации пользователей, только когда это необходимо для выполнения их функций. Данная информация не может быть использована ими в других целях.

6. БЕЗОПАСНОСТЬ БАНКОВСКИХ КАРТ

6.1 При оплате заказов в интернет-магазине «Водомастер.ру» с помощью кредитных карт все операции с ними проходят на стороне банков в специальных защищенных режимах. Никакая конфиденциальная информация о банковских картах, кроме уведомления о произведенном платеже, в интернет-магазин не передается и передана быть не может.

7. ВНЕСЕНИЕ ИЗМЕНЕНИЙ И ДОПОЛНЕНИЙ

7.1. Все изменения положений или условий политики использования личной информации будут отражены в этом документе. Интернет-магазин «Водомастер.ру» оставляет за собой право вносить изменения в те или иные разделы данного документа в любое время без предварительного уведомления, разместив обновленную версию настоящей Политики конфиденциальности на Сайте.

что это такое, для чего нужен, как устроен и как работает


Чтобы обеспечить стабильную работу водопровода, следует выяснить, что такое гидроаккумулятор. Это полезное устройство необходимо для автоматизации работы независимой водопроводной системы.

Оно также позволяет заметно продлить срок использования насоса и защитить оборудование от гидроударов.

В этом материале мы расскажем об обустройстве и принципах работы гидроаккумуляторов, а также приведем рекомендации по монтажу оборудования.

Содержание статьи:

Устройство и принцип работы

От обычного накопителя гидроаккумулятор отличает более сложное устройство, которое заметно расширяет его функционал.

Он состоит из:

  • металлического корпуса;
  • внутренней мембраны;
  • ниппеля;
  • патрубка для воды.

Мембрана разделяет емкость на две части, одна предназначена для воды, а во вторую подкачивают воздух или инертный газ. В результате жидкость внутри устройства находится под определенным давлением. Это позволяет регулировать напор воды в системе.

О том, для чего нужен гидроаккумулятор, сможет рассказать каждый, кто хотя бы раз сталкивался с проблемой низкого напора в системе. Иногда задачу решают с помощью , но ГА – более эффективный вариант.

Внутри гидроаккумулятора находится мембрана¸ которая разделяет устройство на две части: для воды и для воздуха, поэтому ГА также называют мембранным баком

Его устанавливают в системе после насоса на наружном или внутреннем водопроводе, конкретная схема зависит от характеристик системы. Вода поступает в емкость и накапливается там, при этом благодаря мембране внутри создается давление, необходимое для нормальной эксплуатации автономного водоснабжения с безотказной подачей воды в краны.

Обычный накопитель не гарантирует подходящих характеристик давления для водопровода, так как напор создается только из-за разницы в высоте расположения точки забора воды и емкости с водой. А вот с ГА не нужно поднимать бак на чердак или эстакаду, так как можно подкачать воздух, чтобы создать желаемый напор.

Современная техника, например, машинка-автомат, гидромассаж, джакузи, посудомоечная машина, способна функционировать только при в водопроводной сети. Да и обычный душ удобнее принимать, когда поток воды достаточно сильный, а не течет слабой струйкой.

Гидроаккумулятор обязательно используют в комплекте с реле давления, которое управляет насосом, подающим воду из скважины, колодца и т.п., и манометром, предназначенным для контроля и отслеживания рабочих параметров независимого водоснабжения.

Реле давления и манометр нужны для автоматизации работы насоса¸ а фильтры очищают воду от ненужных примесей и защищают гидроаккумулятор от повреждений

Реле настраивают таким образом, чтобы по достижении выбранного пользователем давления насос включался и отключался. Когда в гидроаккумулятор наберется достаточное количество воды, и давление достигнет максимальной заданной точки, насос выключится. Этот показатель по понятным причинам называют давлением отключения.

В процессе использования воды давление в баке постепенно уменьшается. Когда оно достигает минимального заданного значения (это так называемое давление включения), насос начинает работать. Вода поступает в емкость, давление растет, достигает предела, после чего насос отключается.

Затем вода снова убывает из бака, когда хозяева дома открывают кран, давление падает, реле запускает насос и т.д. Если исключить из этой цепочки ГА и реле, насосное оборудование будет включаться каждый раз при открывании крана. Такое использование дорогостоящей техники нерационально, поскольку ресурс ее работы ограничивается определенным количеством включений-выключений.

Гидробак может поставляться как отдельный агрегат или в составе насосной станции. В первом случае его подключают к погружному насосу через реле давления

Кроме того, насос подает воду стремительно, что может обернуться таким явлением как . Для водопровода этакие нагрузки нежелательны, они могут повредить трубы. А гидроаккумулятор – это прочное устройство, которое станет буфером и защитит систему от нежелательного воздействия.

Наконец, гидробак позволяет создать некоторый запас воды. Даже при отсутствии электроэнергии какое-то время можно будет пользоваться водой, хранящейся в ГА. Конечно, это не такой большой запас, как в накопителе, но и он может оказаться очень полезным.

Какими бывают гидроаккумуляторы?

Различают устройства вертикальные и горизонтальные, их по-разному устанавливают. Обычно баки емкостью до 50 л располагают горизонтально, а объемом побольше – вертикально, чтобы не занимали много места. На эффективность это не влияет. Можно выбирать такую модель, которая будет удобнее в эксплуатации и подойдет для места, где ее будут ставить.

Общий объем гидробака и количество воды, которое он может вместить, это разные показатели. Емкость выбирают в зависимости от характеристик водопроводной системы

В вертикальных и горизонтальных моделях для отведения воздуха из той части, в которую накачан воздух или газ, предусмотрен ниппель – воздушный клапан. Использовать его очень просто.

Расположен он у всех видов гидробаков со стороны, противоположной установки фланца, предназначенного для подключения оборудования к водоснабжению.

Мембранные баки с красным корпусом предназначены для систем ГВС или для отопления. Их нужно использовать строго по назначению

Цвет емкости обычно бывает голубым или синим, в отличии от красных расширительных баков для отопления. Они не взаимозаменяемые, для изготовления мембраны используются разный материал. В “холодных” гидробаках применяют пищевую резину.

Кроме того, гидроаккумуляторы синего цвета могут переносить более высокое давление, чем устройства для отопления и ГВС. Нельзя использовать такие емкости не по назначению, они быстро выйдут из строя.

В вертикально ориентированных ГА вода подается снизу, а лишний воздух удаляют по необходимости сверху, стравливая его через ниппель. В горизонтальных вариантах как подача воды, так и стравливание воздуха производится сбоку.

Резьбовое соединение для подключения к водоснабжению всегда одного размера, это 1 1/2 дюйма. Резьба для подсоединения мембраны может быть внутренней или наружной. Размеры их тоже унифицированы, внутренняя резьба стандартно равно 1/2 дюйма, наружная – 3/4 дюйма. Это важный момент, поскольку для надежного подключения нужно, чтобы размеры патрубка и водопроводной трубы совпадали.

Если планируется организация независимой системы водоснабжения, нужно знать, как устроен обычный гидроаккумулятор для воды. Следует сразу определиться с вариантами подключения к водопроводу и способами удаления воздуха, если давление превысит нормативное значение, а также со схемами подсоединения к системе.

Импортные модели ГА выглядят очень презентабельно, но они не всегда подходят для эксплуатации в местных условиях. Перед покупкой такого устройства следует изучить отзывы

Следует помнить, что они изначально проектировались под условия страны, где были произведены, а они не всегда совпадают с местными реалиями. Условия эксплуатации могут оказаться слишком сложными для западных моделей, поэтому имеет смысл поискать вариант от отечественного производителя, который и по стоимости может оказаться более привлекательным.

Рекомендации по монтажу и эксплуатации

Установить гидробак несложно, его просто подключают к водопроводной системе после насоса. Перед входом в устройство необходимо поставить хороший фильтр, чтобы очистить воду от примесей. Они могут скопиться внутри и повредить мембрану.

Гидроаккумулятор, предназначенный для автономного водопровода, лучше всего использовать с реле давления, которое будет управлять работой погружного насоса

Нужно правильно выбрать место для монтажа. ГА должен стоять там, куда можно свободно подойти для осмотра прибора и его технического обслуживания. Со временем может понадобиться ремонт устройства, поэтому не помешает заранее продумать порядок его демонтажа и трудности, которые могут в это время возникнуть.

Очень важно, чтобы размеры патрубка и водопроводной трубы совпадали. Это позволит избежать гидравлических потерь из-за сужения трассы на каком-то участке. Использование переходников допустимо, но нежелательно. Во время поступления и убывания воды мембранный бак может вибрировать.

Рекомендуется крепить его к основанию через амортизирующие прокладки. Подключение к водопроводу выполняют гибкой подводкой. Следует убедиться, что устройство правильно выставлено по горизонтали и вертикали, перекосы недопустимы.

Нужно заранее позаботиться о возможности отключить ГА от водопровода таким образом, чтобы не пришлось полностью сливать воду из системы. Это требование реализуется установкой обычного запорного крана. Для небольших емкостей, вместимостью до 10 л, в которых нет ниппеля, нужно предусмотреть также установку сливного крана.

Подробнее о том, как подключить гидроаккумулятор в систему водоснабжения можно прочесть в

Техобслуживание гидробака сводится к внимательному осмотру корпуса и контролю давления в воздушном отделении. Иногда нужно подкачать воздух или стравить его, чтобы восстановить правильные показатели. Обычно давление должно составлять около двух атмосфер или немного меньше. Кроме того, следует удалить воздух, который скопился за мембраной в отсеке, где хранится вода.

Иногда здесь можно даже установить автоматический воздухоотводчик. Если же отверстие для этой процедуры отсутствует, нужно отключить ГА от водопровода и полностью опустошить его через сливной кран. Воздух выйдет из емкости вместе с водой. Потом остается просто снова включить насос, чтобы в бак снова начала поступать вода.

Говоря о том, как работает мембранный гидроаккумулятор, стоит отметить, что самая частая поломка в ГА – прорыв мембраны. Этот эластичный элемент подвергается постоянному воздействию на растяжение и сжатие, поэтому со временем выходит из строя.

Вот признаки того, что мембрана прорвана:

  • вода поступает из крана резкими толчками;
  • стрелка манометра “скачет”;
  • после полного стравливания содержимого “воздушного” отсека из ниппеля вытекает вода.

Последний пункт позволяет точно выяснить, действительно ли проблема именно с мембраной. Если вода из ниппеля не вытекает, а вода поступает в систему слабо, скорее всего, корпус разгерметизирован. Нужно внимательно его осмотреть, найти и заделать трещины.

Мембрана может испортиться из-за износа или неправильной эксплуатации. Ее нужно полностью заменить, ремонтировать этот элемент бесполезно

Заменить мембрану не сложно, но нужно подобрать точно такой же элемент, как и испорченный, поскольку он рассчитан именно для этого конкретного ГА.

Чтобы провести ремонт, нужно:

  1. Отключить устройство от водопроводной системы.
  2. Слить воду, стравить воздух.
  3. Открутить крепежные винты.
  4. Извлечь испорченную мембрану.
  5. Установить исправный элемент.
  6. Закрепить его винтами.
  7. Установить ГА на место и подключить его к системе.

Самый сложный этап этой процедуры – затягивание винтов. Оно должно быть равномерным, поэтому рекомендуется закручивать их, делая по одному обороту поочередно на каждом элементе. Такая тактика позволит правильно закрепить мембрану на корпусе и предотвратить соскальзывание ее края внутрь.

Некоторые неопытные мастера в стремлении улучшить качество соединения наносят на край мембраны герметик. Этого делать не следует, поскольку состав может разрушить резину и вызвать обратный эффект.

Выводы и полезное видео по теме

Устройство и принцип работы ГА:

Для системы автономного водоснабжения гидроаккумулятор – полезное оборудование, обеспечивающее автоматический забор воды, включение/отключение насоса. Такое устройство повысит качество водоснабжения и предотвратит поломку технических устройств.

После изучения материала появились вопросы? Вы можете задать их в блоке с комментариями, а мы постараемся дать на них предельно понятный ответ.

Гидроаккумулятор для систем водоснабжения – как работает? + Видео

Достаточно вникнуть в принцип действия и устройство гидроаккумулятора, чтобы самому понять, насколько важен этот агрегат для систем подачи воды в частном доме.

Гидроаккумулятор – а зачем он нужен?

Любой владелец загородного жилья прекрасно осведомлен о том, как бывает сложно обеспечить стабильную работу автономных систем водоснабжения. Сбои в подаче воды случаются достаточно часто. Они приводят к выходу из строя дорогостоящей бытовой техники и существенно осложняют жизнь человека в частном доме.

Иногда хватает одного скачка давления, чтобы газовый нагреватель воды либо недавно приобретенная посудомоечная машина поломались. Предупредить подобные неприятности помогает гидроаккумулятор для систем водоснабжения, называемый в быту расширительным, напорным или накопительным баком.

Гидроаккумулятор для систем водоснабжения

Основные задачи такого устройства:

  1. Поддержка в водопроводной сети постоянной величины давления, защита системы от его перепадов. При одновременной работе 2–3 кранов (например, на кухне и в санузле) при скачках напора воды отмечаются значительные температурные колебания. Если в это время вы принимаете душ или моете посуду, есть большая вероятность получения ожога. Предотвратить столь неприятные ситуации позволяет установка расширительного бака для систем водоснабжения.
  2. Предохранение от раннего эксплуатационного износа водного насоса. В гидроаккумуляторе всегда имеется некоторое количество воды. При открытии крана именно она начинает поступать в сеть в первую очередь. При этом насос не включается до тех пор, пока запас воды в накопительном баке полностью не израсходуется.
  3. Защита трубопровода от гидравлических ударов. Они нередко фиксируются при запуске насоса и наносят системе водоснабжения ощутимый вред.
  4. Обеспечение потребителей определенным запасом воды на случай отключения подачи электроэнергии, когда насос не функционирует из-за отсутствия электричества. Вода, благодаря установленному баку, в подобных ситуациях все равно имеется. Ее конкретное количество зависит от объема гидроаккумулятора (100 литров, 200 литров и так далее).

Как видите, рассматриваемый гидробак имеет действительно огромное значение для нормального функционирования систем водоснабжения в частных жилищах, особенно если они располагаются за городом.

Какими бывают гидроаккумуляторы – коротко о классификации баков

По виду накопления энергии интересующие нас устройства бывают с механическим и с пневматическим накопителем. Первые из указанных функционируют за счет кинетики пружины либо груза. Механические баки характеризуются большим количеством эксплуатационных недостатков (крупные геометрические размеры, высокая инерционность систем), поэтому для бытовых систем водоснабжения они не используются. При этом стоит заметить, что такие устройства не нуждаются в подзарядке и питании от внешних электроисточников.

Агрегаты с пневматическим накопителем более распространены. Они функционируют за счет сжатия воды под давлением газа (либо наоборот) и делятся на следующие виды: поршневые; с грушей или с баллоном; мембранные. Поршневые аппараты рекомендованы для случаев, когда требуется постоянно иметь достаточно большой запас воды (500–600 литров). Их стоимость невысока, но в частных жилищах такие установки эксплуатируются крайне редко.

Небольшие размеры имеют мембранные баки. Они удобны в применении. Их чаще всего используют для систем водоснабжения частных домостроений. Активно применяются и более простые баллонные агрегаты. Такие приспособления просты в монтаже (их установку можно произвести самостоятельно) и обслуживании (при необходимости любой домашний мастер без труда заменит резиновую грушу, вышедшую из строя, либо прохудившийся бак). Хотя потребность в ремонте баллонных гидроаккумуляторов возникает редко. Они по-настоящему долговечны и надежны в эксплуатации.

Мембранный бак для частного дома

По назначению накопительные баки подразделяются на такие типы:

  • для систем отопления;
  • для горячей воды;
  • для холодной воды.

А по способу монтажа выделяют вертикальные и горизонтальные агрегаты. И первые, и вторые функционируют абсолютно одинаково. У вертикальных гидробаков объемом более 100 литров обычно имеется специальный клапан. Он дает возможность стравливать воздух из сети водоснабжения. Горизонтальные аппараты снабжаются отдельным креплением. К нему фиксируется наружный насос.

Также расширительные баки для автономных систем водоснабжения различаются по своему объему. В продаже имеются и совсем маленькие агрегаты, рассчитанные на 2–5 литров, и настоящие гиганты на 500 и более литров.  Для частных домов рекомендуется приобретать гидроаккумуляторы на 100 либо 80 л.

Как устроен и как работает гидробак – простая и эффективная конструкция

Мембранные гидроаккумуляторы представляют собой емкость, внутри которой устанавливается резиновая специальная прокладка, разделяющая бак на две функциональные части. В одну часть закачивается инертный газ либо обычный воздух, во второй находится вода.

Рассматриваемый нами агрегат оснащается манометром, показывающим давление воздуха, а также специальным отверстием, по которому подается вода. Ее закачка в емкость производится за счет действия электрического насоса. Если гидробак для систем водоснабжения оснащен автоматическими приборами, они самостоятельно выключают насосное оборудование при достижении заданного показателя давления. При этом вода перестает поступать в емкость.

Устройство гидробака

Давление в баке уменьшается при каждом расходе воды. Когда оно становится минимально допустимым, автоматика снова запускает насосное оборудование и подкачивает воду. Как видим, принцип работы гидроаккумулятора очень прост. Разобраться с этим вопросом несложно даже человеку весьма далекому от премудростей систем водоснабжения и оборудования для них. Устройство баков с грушей или баллоном (их чаще всего изготавливают на 100 литров) отличается от мембранных тем, что в них нет соприкосновения жидкости с корпусом емкости. В баллонных агрегатах вода попадает в грушу, а затем расходуется по назначению.

Важный момент! Мембранные баки емкостью более 100 л всегда снабжаются стравливающим воздух клапаном. В гидроаккумуляторах с меньшим литражом такого дополнительного элемента нет. Поэтому при их монтаже нужно в обязательном порядке снабдить водопровод краном либо специальным тройником, с помощью которых можно будет перекрыть главную магистраль сети, а затем без проблем стравить ненужный воздух.

Схемы подключения гидробака к системам водоснабжения

Баллонные и мембранные емкости монтируются по двум методикам. Если вы применяете поверхностное насосное оборудование, гидроаккумулятор подключается по такой схеме:

  1. Определяете давление внутри емкости. Его показатель обязан быть меньше на 0,3–1 бар величины давления, необходимого для запуска насосного оборудования (конкретное число обычно указывается на реле насоса).
  2. Подключаете к гидробаку штуцер. Он должен иметь 5 выходов – для подключения водопроводной трубы, насоса, непосредственно накопительной емкости, манометра, насосного агрегата и реле. Штуцер присоединяется к гидроаккумулятору через фланец, который снабжен специальным клапаном (пропускным) или жестким шлангом.
  3. Привинчиваете все остальные элементы системы к штуцеру.
  4. Места всех соединений герметизируете лентой либо герметиком и паклей.

Схема подключения гидроаккумулятора

Особое внимание при монтаже оборудования уделите подключению реле давления. Под его крышкой есть два контакта – насос и сеть. Вам нужно подвести к каждому из них соответствующий провод. Сделать это несложно, если контакты подписаны. В противном случае придется вызывать профессионального электрика. После установки и подключения бака обязательно проверьте систему на отсутствие протечек. Если таковые есть, выполните герметизацию соединений более качественно.

Подключение накопительной емкости к погружному насосу имеет некоторые особенности. Такое насосное оборудование устанавливается в колодце с водой или в скважине. В этом случае обязательно монтируется обратный клапан. Его ставят на насос (через внутреннюю резьбу, сделанную в крышке устройства).

Клапан необходим для предотвращения обратного оттока воды в колодец. Это его единственная задача. После монтажа обратного клапана к системе подаче воды можно подключать и гидробак по уже известной вам схеме. Теперь вы знаете все о принципе действия, устройстве и тонкостях монтажа накопительных емкостей. Смело устанавливайте гидроаккумулятор, чтобы в вашем жилище никогда не было перебоев с водой!

Оцените статью: Поделитесь с друзьями!

Гидроаккумулятор для систем водоснабжения: принципы работы, функции и особенности подключения

Функционирование водопроводной системы, даже если она автономная, далеко не всегда может похвастаться стабильностью. Среди самых неприятных и даже опасных проблем – перепады давления в трубах, которые могут спровоцировать низкий напор воды, отказ бытовой техники и гидроудары. Как защитить систему водоснабжения от таких негативных последствий? Наиболее верное решение – установить гидроаккумулятор. Чтобы подробно познакомить вас с этим прибором и сориентировать в выборе подходящей модели, далее расскажем об устройстве, принципах работы и функциях гидроаккумулятора, а также с видео разберемся в правилах подключения и настройки оборудования.

Как выполняется работа гидроаккумулятора?

Принцип работы гидроаккумулятора напрямую зависит от его устройства, поэтому схему функционирования прибора следует рассматривать с привязкой к его конструктивным особенностям. Исходя из последних, агрегаты делятся на два типа: мембранные и баллонные.

Мембранный гидроаккумулятор представляет собой емкость из двух герметичных камер, воздушной и водной, которые разделены эластичной резиновой мембраной. Работает прибор таким образом:

  • при включении насоса водная камера под заданным давлением наполняется водой, а воздух во второй камере начинает сжиматься;
  • когда уровень давления поднимается до максимальной отметки, насос отключается и при открывании крана водопровода сильно сжатый воздух выдавливает воду из мембраны в трубы;
  • по мере опустошения бака давление уменьшается и, когда оно доходит до минимального показателя, насос возобновляет свою работу и вновь начинает закачивать воду в соответствующую камеру.
Мембранный гидроаккумулятор

Баллонный гидроаккумулятор – это толстостенный резервуар, внутри которого расположен эластичный баллон из каучука. Он функционирует так:

  • после включения насоса баллон наполняется водой, а вокруг него под заданным давлением собирается воздух;
  • при увеличении силы давления до максимально установленной отметки насос выключается;
  • когда пользователь открывает кран, воздух из околобаллоного пространства начинает вытеснять воду и она поступает в трубы;
Баллонный гидроаккумулятор
  • когда резервуар пустеет, давление опускается и насос снова активизируется.

Совет. Если решите остановиться на мембранном аккумуляторе, выбирайте модель со съемной мембраной – в случае деформации ее можно легко заменить.

Для чего нужен гидроаккумулятор водоснабжения?

Главные функции гидроаккумулятора в водопроводной системе:

  1. Защита насосного оборудования от скоропостижного износа – так как в баке накапливается вода, насос включается не после каждого открывания крана, а лишь в случае полного опустошения резервуара. Подобная схема работы позволяет насосу запасти цикл неиспользованных включений/выключений, тем самым продлив срок своей эксплуатации.
  2. Поддержка стабильного давления в системе водоснабжения – гидроаккумулятор обеспечивает постоянный уровень давления в системе даже после остановки насоса.
  3. Защита системы от резких скачков напора воды – гидробак поддерживает неизменный напор воды при одновременном открывании сразу нескольких водопроводных кранов.
  4. Демпфирование гидравлических ударов – прибор делает невозможным гидроудары при активизации насоса, что защищает трубы от преждевременной деформации.
  5. Создание резерва воды – благодаря запасам накопительного бака у домочадцев сохраняется возможность пользоваться водой даже в случае перебоев с электроэнергией, что особенно часто случается в загородных поселениях.

Как выбрать гидроаккумулятор?

Основополагающий критерий гидроаккумулятора для любой системы водоснабжения – объем. Как определить оптимальную вместительность резервуара для своих нужд? Тут нужно принимать во внимание четыре важнейших фактора: мощность насосного оборудования; количество домочадцев, которые пользуются водопроводом; число точек забора, включая не только краны и выходы под сантехнику, но и выходы для бытовой техники; максимальное число включений/отключений насосного оборудования за час.

При выборе устройства важно правильно рассчитать объем

Специалисты вывели определенные ориентиры для расчета объема гидроаккумулятора. Например, если число домочадцев не превышает трех человек, а насос развивает мощность около 2 куб.м./ч, то вам будет достаточно бака вместительностью 24 л. Если число потенциальных пользователей варьируется от четырех до восьми, а мощность насоса составляет 2,5 куб.м./ч, покупайте гидрорезервуар объемом 50 л.

Но это мы рассмотрели минимальные объемы баков для удовлетворения бытовых нужд. Если же вы покупаете гидроаккумулятор с целью резервирования большой массы воды на случай длительных отключений электроэнергии, их объем может быть неограниченным. Хорошее решение для таких ситуаций – приобретение бака с возможностью подсоединения к нему дополнительных резервуаров.

Совет. Покупая бак, не забывайте, что чем меньше его объем, тем чаще возникает необходимость включения насоса и тем выше риск его преждевременного износа. Как правило, количество максимальных включений/выключений насосов колеблется в рамках 20-30 циклов за час – все, что выше неизбежно приводит к скорой деформации прибора.

Какая схема подключения гидроаккумулятора?

Основные этапы монтажа гидроаккумулятора в систему водоснабжения:

  1. Обозначьте место расположения бака и зафиксируйте его на рабочей поверхности с помощью крепежей на резиновых прокладках. Заземлите оборудование.
  2. Подготовьте пятивыводной штуцер. Подсоедините его к гидроаккумулятору посредством фитинга.
  3. Подключите к штуцерным выходам манометр, шланг/трубку от насоса, реле давления и трубу водопроводной сети.

Совет. При подключении рабочих компонентов к штуцеру важно обеспечить максимальную герметичность резьбовых соединений – для плотной фиксации деталей можно использовать ФУМ-ленту.

После установки гидроаккумулятора его нужно настроить:

Подключение гидроаккумулятора
  1. Проверьте давление внутри бака – оно должно быть 1,5 атм. Для замеров используйте манометр – желательно, чтобы это был или электронный, или механический автомобильный прибор, так как они наиболее точные. Если давление ниже нормы, подкачайте воздух в соответствующий отсек бака.
  2. Настройте реле давления – поднимите крышку прибора и посредством большой гайки Р выставьте максимальное давление, а посредством малой ∆P – минимальное. Для обеспечения нормальной работы бытовой электротехники и сантехники достаточно диапазона давлений 1,5-2,8/3 атм.
  3. Запустите систему – после старта работы гидроаккумулятора проследите за двумя моментами: протечками в местах соединений и увеличением давления. Если протечек нет, а давление стабильно поднялось до максимальной отметки и насос выключился, значит, оборудование функционирует правильно.

Таким образом, если хотите, чтобы ваша система водоснабжения постоянно радовала эффективной работой, без гидроаккумулятора точно не обойтись. Перед вами основные тонкости выбора и подключения оборудования – советуем отложить самодеятельность и ориентироваться на вышепредложенные правила, чтобы избежать ошибок и удачно запустить водопроводную систему с новым прибором.

Как устроен гидроаккумулятор: видео

Гидроаккумулятор для систем водоснабжения: фото

Монтаж гидроаккумулятора для систем водоснабжения видео

Для того чтобы насос не включался каждый раз при открывании крана, в систему устанавливают гидроаккумулятор. В нем содержится некоторый объем воды, достаточный для небольшого расхода. Это позволяет практически избавиться от кратковременных включений насоса. Установка гидроаккумулятора процедура несложная, но потребуется еще некоторое количество устройств — как минимум — реле давления, а еще желательно наличие манометра и воздухоотводчика.

Функции, назначение, виды

В системе водоснабжения частного дома без гидроаккумулятора насос включается всякий раз как где-то идет расход воды. Эти частые включения приводят к износу оборудования. Причем не только насоса, но и всей системы в целом. Ведь каждый раз происходит скачкообразное повышение давления, а это — гидроудар. Чтобы уменьшить количество включения насоса и сгладить гидроудары используют гидроаккумулятор. Это же устройство называют расширительный или мембранный бак, гидробак.

Назначение

Одну из функций гидроаккумуляторов — сглаживать гидроудары, мы выяснили. Но есть и другие:

  • Уменьшение количества включений насоса. В резервуаре есть некоторое количество воды. При небольшом расходе — помыть руки, умяться — вода течет из бака, насос не включается. Он включится только тогда, когда ее останется совсем немного.
  • Поддержание стабильного давления. Для этой функции необходим еще один элемент — реле давления воды, но давление они поддерживают в требуемых рамках.
  • Создать небольшой запас воды на случай отсутствия электроэнергии.

Не удивительно, что в большинстве систем частного водоснабжения данное устройство присутствует — плюсов от его использования много.

Гидроаккумулятор — это бак из листового металла поделенный на две части эластичной мембраной. Мембрана бывает двух видов — диафрагмы и баллона (груши). Диафрагма крепится поперек бака, баллон в виде груши закрепляют на входе вокруг входного патрубка.

По назначению они бывают трех видов:

  • для холодной воды;
  • для горячей воды;
  • для систем отопления.

Гидробаки для отопления выкрашены в красный цвет, баки для водопровода окрашены в синий.

Расширительные баки для отопления имеют обычно меньшие размеры и более низкую цену. Это связано с материалом мембраны — для водоснабжения она должна быть нейтральной, ведь вода в трубопроводе питьевая.

По типу расположения гидроаккумуляторы бывают горизонтальные и вертикальные. Вертикальные снабжены ножками, некоторые модели имеют пластины для навешивания на стену. Именно вытянутые вверх модели чаще используют при самостоятельном создании систем водопровода частного дома — они занимают меньше места. Подключение гидроаккумулятора такого типа стандартное — через вывод размером в 1 дюйм.

Горизонтальными моделями обычно комплектуют насосные станции с насосами поверхностного типа. Тогда насос располагают сверху емкости. Получается компактно.

Принцип работы

Радиальные мембраны (в виде тарелки) используются в основном в гироаккумуляторах для систем отопления. Для водоснабжения в основном внутри устанавливают резиновую грушу. Как работает такая система? Пока внутри есть только воздух, давление внутри штатное — то, которое выставлено на заводе (1,5 атм) или которое вы выставили сами. Включается насос, начинает закачивать в бак воду, груша начинает увеличиваться в размерах. Вода постепенно заполняет все больший объем, все больше сжимая воздух, который находится между стенкой бака и мембраной. При достижении некоторого давления (обычно для одноэтажных домов это 2,8 — 3 атм) насос отключается, давление в системе стабилизируется. При открытии крана или другом расходе воды, она поступает из гидроаккумулятора. Течет она до тех пор, пока в баке давление не упадет ниже определенной отметки (обычно около 1,6-1,8 атм). После чего насос включается, цикл повторяется снова.

Если расход идет большой и постоянный — набираете ванную, например, — насос качает воду транзитом, не закачивая ее в бак. Бак начинает набираться после того, как закрыты все краны.

За включение и отключение насоса при определенном давлении отвечает реле давления воды. В большинстве схем обвязки гидроаккумулятора это устройство присутствует — такая система работает в оптимальном режиме.

Подключение гидроаккумулятора рассмотрим чуть ниже, а пока поговорим о самом баке и его параметрах.

Баки большого объема

Внутреннее строение гидроаккумуляторов объемом от 100 литров и выше немного отличается. Отличается груша — она крепится к корпусу и вверху, и внизу. При таком строении появляется возможность бороться с воздухом, который присутствует в воде. Для этого в верхней части имеется выход, в который можно подключить клапан для автоматического сброса воздуха.

Как выбрать объем бака

Объем бака выбираете произвольно. Никаких требований или ограничений нет. Чем больше объем бака, тем больший запас воды у вас будет на случай отключения и тем реже будет включаться насос.

При выборе объема стоит помнить, что тот объем, который стоит в паспорте — это размер всей емкости. Воды в ней будет почти вполовину меньше. Второе что надо иметь в виду — это габаритные размеры емкости. Бак на 100 литров это приличная такая бочка — около 850 мм высотой и 450 мм в диаметре. Для нее и обвязки надо будет где-то найти место. Где-то — это в помещении, куда приходит труба от насоса. Там обычно и устанавливают все оборудование.

Если чтобы выбрать объем гидроаккумулятора вам требуются хоть какие-то ориентиры, посчитайте средний расход с каждой точки водоразбора (есть специальные таблицы или можно посмотреть в паспорте к бытовой технике). Все эти данные суммируйте. Получите возможный расход в том случае, если все потребители будут одновременно работать. Потом прикиньте, сколько и каких одновременно устройств может работать, посчитайте сколько в этом случае за минуту уйдет воды. Скорее всего к этому времени вы уже придете к какому-то решению.

Чтобы было немного проще, скажем, что объема гидробака в 25 литров хватает на обеспечение нужд двух человек. Он обеспечит нормальное функционирование совсем небольшой системы: кран, унитаз, мойка и небольшой водонагреватель. При наличии другой бытовой техники емкость надо увеличивать. Хорошая новость в том, что если вы решите, что имеющегося резервуара вам недостаточно, можно всегда установить дополнительный.

Каким должно быть давление в гидроаккумуляторе

В одной части гидроаккумулятора находится сжатый воздух, во вторую закачивается вода. Воздух в баке находится под давлением — заводские настройки — 1,5 атм. Это давление не зависит от объема — и на баке емкостью 24 литра и в 150 литров оно одинаковое. Больше-меньше может быть предельно допустимое максимальное давление, но оно зависит не от объема, а от мембраны и указывается в технических характеристиках.

Предварительная проверка и коррекция давления

Перед подключением гидроаккумулятора в систему желательно давление в нем проверить. От этого показателя зависят настройки реле давления, а при транспортировке и хранении давление могло упасть, так что контроль очень желателен. Контролировать давление в гидробаке можно при помощи манометра, подключенного к специальному входу в верхней части бака (емкость от 100 литров и больше) или установленного в нижней его части как одну из деталей обвязки. Временно, для контроля, можно подключить автомобильный манометр. Погрешность у него обычно невелика и работать им удобно. Если такого нет, можно использовать штатный для водопроводов, но они обычно точностью не отличаются.

При необходимости давление в гидроаккумуляторе можно увеличить или уменьшить. Для этого есть ниппель в верхней части бака. Через ниппель подключается автомобильный или велосипедный насос и при необходимости давление увеличивается. Если же его надо стравить, каким-то тонким предметом отгибают клапан ниппеля, выпуская воздух.

Какое давление воздуха должно быть

Так таким же должно быть давление в гидроаккумуляторе? Для нормальной работы бытовой техники необходимо давление 1,4-2,8 атм. Чтобы мембрана бака не рвалась, давление в системе должно быть чуть больше давления бака — на 0,1-0,2 атм. Если в баке давление 1,5 атм, то давление в системе не должно быть ниже чем 1,6 атм. Это значение и выставляют на реле давления воды, которое работает в паре с гидроаккумулятором.

Это оптимальные настройки для небольшого одноэтажного дома.

Если дом двухэтажный, придется давление повышать. Есть формула расчета давления в гидробаке:

Vатм.=(Hmax+6)/10

Где Hmax — высота наивысшей точки водоразбора. Чаще всего это душ. Измеряете (высчитываете) на какой высоте относительно гидроаккумулятора находится его лейка, подставляете в формулу, получаете давление, которое должно быть в баке.

Если в доме установлена джакузи, все сложнее. Придется подбирать опытным путем — меняя настройки реле и наблюдая за работой точек водоразбора и бытовой техники. Но при этом рабочее давление не должно быть больше максимально допустимого для другой бытовой техники и сантехнических приборов (указывается в технических характеристиках).

Как выбрать

Основной рабочий орган гидробака — мембрана. От качества материала зависит срок ее службы. Лучшими на сегодня являются мембраны из пищевой резины (вулканизированные резиновые пластины). Материал корпуса имеет значение только в баках мембранного типа. В тех, в которых установлена «груша» вода контактирует только с резиной и материал корпуса значения не имеет.

Что действительно важно в баках с «грушами» — это фланец. Обычно его делают из оцинкованного металла. В этом случае важна толщина металла. Если это всего 1 мм, примерно через год-полтора эксплуатации в металле фланца появится дырка, бак потеряет герметичность и система перестает работать. Причем гарантия всего год, хоть заявленный срок эксплуатации — 10-15 лет. Фланец прогнивает обычно после окончания гарантийного срока. Заварить его нет никакой возможности — очень тонкий металл. Приходится искать в сервисных центрах новый фланец или покупать новый бак.

Итак, если хотите чтобы гидроаккумулятор служил долго, ищите фланец из толстой оцинковки или тонкий, но из нержавейки.

Подключение гидроаккумулятора к системе

Обычно системе водоснабжения частного дома состоит из:

  • насоса;
  • гидроаккумулятора;
  • реле давления;
  • обратного клапана.

В данной схеме может еще присутствовать манометр — для оперативного контроля давления, но это устройство не обязательно. Его можно периодически подключать — для проведения тестовых замеров.

С пятивыводным штуцером или без

Если насос поверхностного типа, гидроаккумулятор обычно ставят возле него. В этом случае обратный клапан ставят на всасывающем трубопроводе, а все остальные устройства устанавливаются в одной связке. Соединяются они обычно при помощи пятивыводного штуцера.

Он имеет выводы с разными диаметрами, как раз под используемые для обвязки гидроаккумулятора устройства. Поэтому систему чаще всего и собирают на его основе. Но данный элемент совсем необязателен и можно все соединить при помощи обычных фитингов и кусков труб, но это более трудоемкое занятие, к тому же соединений будет больше.

Одним своим дюймовым выводом штуцер накручивается на бак — патрубок расположен внизу. К выходам на 1/4 дюйма подключается реле давления и манометр. К оставшимися свободными дюймовым выводам подключается труба от насоса и разводка к потребителям. Вот и все подключение гироаккумулятора к насосу. Если собираете схему водоснабжения с поверхностным насосом, использовать можно гибкий шланг в металлической обмотке (с дюймовыми штуцерами) — с ним работать проще.

Как обычно, вариантов несколько, выбирать вам.

Подключают гидроаккумулятор к погружному насосу точно так же. Вся разница в том, где установлен насос и куда подавать питание, но к установке гидроаккумулятора это не имеет отношения. Его ставит в том месте, куда заходят трубы от насоса. Подключение — один в один (смотрите схему).

Как установить два гидробака на один насос

При эксплуатации системы, иногда владельцы приходят к выводу, что имеющегося объема гидроаккумулятора им недостаточно. В таком случае можно параллельно установить второй (третий, четвертый и т.д.) гидробак любого объема.

Перенастройку системы делать не надо, реле будет отслеживать давление в том баке, на котором установлено, а жизнеспособность такой системы намного выше. Ведь если повредится первый гидроаккумулятор, второй будет работать. Есть и еще один положительный момент — два бака по 50 литров стоят меньше, чем один на 100. Дело в более сложной технологии производства крупногабаритных емкостей. Так что это еще и экономически выгоднее.

Как подключить второй гидроаккумулятор в систему? На вход первого накрутить тройник, к одному свободному выходу подключить вход от насоса (пятивыводного штуцера), к оставшемуся свободным — вторую емкость. Все. Можно схему тестировать.

Любая линия для снабжения частного дома водой состоит из приборов, автоматизирующих процесс ее работы. Одним из основных ее узлов является накопительный бак, при установке которого своими руками важно знать, как выглядит схема подключения гидроаккумулятора к насосу и системе водоснабжения.

Помимо правильного подключения, гидробак необходимо точно отрегулировать, создав внутри оптимальное давление при работе в индивидуальной системе водозабора. Для выполнения данной работы необходим сантехнический инструмент и соблюдение технологии при регулировочных работах.

Зачем нужен гидробак

Гидроаккумулятор всегда ставят в магистраль индивидуального водоснабжения, он работает постоянно и выполняет следующие функции:

  • Сглаживает негативные последствия гидравлических ударов. При срабатывании электронасоса водный поток резко останавливается или ускоряется, при этом жидкость воздействует на трубопровод и его узлы с физическим усилием. Подключение гидроаккумулятора к системе водоснабжения позволяет плавно накапливать и отдавать воду за счет расположенной внутри пластичной резиновой мембраны.
  • Подключение гидробака уменьшает количество циклов включения и отключения скважинного или колодезного электронасоса за счет накопления жидкости, которая отдается в магистраль при использовании и поддерживает в ней давление, не давая электронасосу включаться.
  • Гидроаккумуляторы создают аварийный запас воды в моменты отключения электричества или выхода насосного оборудования из строя.
  • Подключение гидроаккумулятора к системе водоснабжения нормализует давление, позволяя избежать его резких перепадов при нестабильной работе электронасоса.

Рис. 1 Гидроаккумуляторы для водопроводных магистралей

Устройство гидробака

Устройство гидроаккумулятора не отличается сложностью, он состоит из металлического бака со встроенной грушевидной мембраной или плоской диафрагмой из резины. Диафрагма крепится поперек корпуса между его половинками, грушевидный баллон устанавливают на входе около горловины – такой тип используют для подачи воды при индивидуальном водоснабжении. В задней части металлической емкости установлен ниппель, с помощью которого в корпус гидробака закачивают воздух, подстраивая его внутреннее давление к системе.

Гидробаки выпускают для отопительных систем, горячей воды (красного цвета) и холодного водоснабжения (синий цвет). В зависимости от объема гидробака и способа монтажа различают модели с горизонтальным расположением и объемные вертикальные агрегаты, которые устанавливаются на ножках.

Горизонтальные модели небольшой емкости чаще используют в насосных станциях со встроенным центробежным электронасосом поверхностного типа и элементами автоматической системы управления. Гидробаки с вертикальным расположением используют отдельно, их удобнее монтировать при работе с погружными электронасосами. Вертикальные баки конструктивно отличаются от горизонтальных моделей: мембранная оболочка крепится в верхней и нижней части корпуса, помимо ниппеля для накачки воздуха они имеют дополнительный штуцер для его стравливания из резиновой оболочки.

При приобретении гидробака следует знать, что его полезный объем при накоплении жидкости составляет не более 30% от общего.

Рис. 2 Конструкция гидробака

Принцип работы гидробака

Обычно внутренняя груша располагается в емкости с воздухом под стандартным давлением 1,5 бар. При включении вода подается установленным в скважину электронасосом в бак, заполняя резиновую грушу – она увеличивается в объеме, сжимая воздушное пространство внутри. При достижении давления (стандарт 3 бара), равного порогу срабатывания автоматического реле, электронасос отключается, и поступление воды в линию прекращается.

При включении вода идет к потребителю под давлением, которое создает резиновая мембрана, сжатая воздухом. По достижении минимальной отметки в 1,7 бар. реле замыкает цепь питания электронасоса и происходит заполнение магистрали.

Рис.3 Пример установки гидроаккумулятора в систему водоснабжения с погружным насосом

Схема подключения гидроаккумулятора к насосу и системе водоснабжения

Установка гидроаккумулятора для систем индивидуального водоснабжения своими руками производится вместе с автоматикой и переходниками, к которым относятся коммутирующий пятивходовой штуцер, манометр для настройки и контроля, коммутирующее гидравлическое реле. При использовании в водозаборе скважинного глубинного электронасоса обвязка для скважины включает в себя реле сухого хода и обратный клапан, если он отсутствует в насосном агрегате.

Если в водопроводной магистрали используется поверхностный центробежный электронасос, то практичнее и дешевле приобрести готовую смонтированную насосную станцию, чем проводить монтаж элементов системы самостоятельно.

Рис. 4 Бачок расширительный в станции

Настройка гидроаккумулятора при подключении

Перед использованием в частном доме водопровода с гидроаккумулятором нужно знать, каким должно быть давление в гидроаккумуляторе для его оптимальной работы, для снятия показаний берут переносной манометр. Типовая водопроводная линия со стандартным реле давления имеет пороги срабатывания от 1,4 до 2,8 бар., заводская установка давления в гидробаке при этом – 1,5 бар. Чтобы работа гидроаккумулятора была эффективной и происходило его полное наполнение, для заданной заводской установки подбирают нижний порог включения электронасоса на 0,2 бар. больше – на реле устанавливают порог 1,7 бар.

Если в гидробаке в процессе эксплуатации или в связи с длительным сроком хранения при измерениях манометром определяют, что давление недостаточно, поступают следующим образом:

  1. Отключают электронасос от питания.
  2. Снимают защитную крышку и прижимают клапан гидробака в виде головки ниппеля на выходе устройства – если оттуда поступает жидкость, значит произошло повреждение резиновой мембраны и ее необходимо менять. Если из гидробака поступает воздух, с помощью автомобильного манометра измеряют его давление.
  3. Сливают воду из магистрали, открывая ближайший к расширительному баку кран.
  4. При помощи ручного насоса или компрессора накачивают в аккумуляторный бак воздух до достижения показаний манометра в 1,5 бар. Если после автоматики происходит подъем воды на определенную высоту (дома высокой этажности), общий напор и диапазон работы системы повышают исходя из того, что 1 бар. приравнивают к 10 метрам вертикального водного столба.

При расчете необходимого давления в гидробаке для любых диапазонов выбирают его значение на 10% меньше нижнего порога срабатывания реле. Выбор данного значения гарантирует, что встроенная мембрана будет расширяться и сжиматься в небольшом диапазоне и соответственно увеличится срок ее службы и всего расширительного бака.

Рис.5 Настройка гидроаккумулятора

Определение параметров бака

В большинстве случаев включений, гидробаки для водоснабжения устанавливают по принципу: чем больше объем, тем лучше. Но слишком большой объем не всегда оправдан: гидробак займет много полезного места, вода в нем будет застаиваться, и если перебои с электроэнергией бывают очень редко, в нем просто нет необходимости. Слишком маленький гидробак также неэффективен – если используется мощный насос, то он будет часто включаться и выключаться и быстро выйдет из строя. Если возникает ситуация, когда пространство для монтажа ограничено или финансовые средства не позволяют приобрести накопительный бак большой емкости – можно рассчитать его минимальный объем по приведенной ниже формуле.

Рис. 6 Как правильно в системе водоснабжения рассчитать объем гидробака

Еще один метод вычислений – расчет необходимого объема гидробака по мощности используемого электронасоса.

В последнее время на рынке появились современные высокотехнологичные электронасосы с плавным пуском и остановкой, частотным регулированием скорости вращения рабочих колес в зависимости от водопотребления. В этом случае необходимость в гидравлическом баке с большим объемом отпадает – плавный пуск и регулировка не вызывают гидроударов, как в системах с обычными электронасосами. Автоматические блоки управления высокотехнологичных устройств с частотным управлением имеют встроенный гидробак очень маленького объема, рассчитанный на свою насосную группу.

Рис.7 Таблица рассчитанных значений давления и объема гидробака в зависимости от режимов работы поставляющей воду линии

Установка нескольких гидробаков

Некоторые пользователи сталкиваются с проблемой, как подключить дополнительный бак для линии водоснабжения, если произошло увеличение потребления или объем накопительного бака слишком мал для нормальной работы. Установка двух гидроаккумуляторов не представляет особых сложностей, их можно собрать, подключив параллельно, с использованием дополнительного переходного штуцера, гибкого шланга или обрезка водопроводной трубы.

Преимуществом системы с двумя баками является ее высокая надежность в случае, если в одном из них произойдет разрыв резиновой мембраны.

Рис. 8 Гидробак в блоке частотного управления насосами

Как выбрать гидроаккумулятор

При выборе гидроаккумулятора лучше отдать предпочтение моделям с резиновой грушей – в мембранных видах жидкость контактирует с металлическим корпусом, что может вызвать его коррозию.

Основной рабочий элемент баллонного гидробака – грушевидная мембрана, от качества которой зависит срок его службы, при этом материал корпуса играет менее важную роль, так как не контактирует с водой. Обычный материал изготовления груши – изобутированная пищевая резина, при выборе модели для наружного монтажа повышенное внимание следует обращать на фланец, к которому крепится резиновая мембрана. Предпочтение следует отдавать моделям, фланец которых сделан из толстой нержавейки или оцинкованной стали – такое изделие прослужит 10-15 лет без потери своей герметичности.

Еще одно преимущество баллонного бака – простота замены резиновой мембраны. Для этого откручивают несколько шестигранных болтов крепления фланца и снимают его вместе с оболочкой.

Рис. 9 Вертикальные гидробаки в водопроводной линии

Установка гидроаккумулятора

После приобретения подходящей модели электронасоса к скважине или колодцу и подключения его к трубопроводу, расчета объема и покупки нужного гидробака, необходимо его правильно установить. Если модель имеет большой объем и устанавливается на вертикальное ножки, стоит воспользоваться следующими рекомендациями:

  • Лучше ставить объемный накопительный бак в самой высокой точке дома (чердак, второй этаж) – это позволит создать максимальное давление в водопроводной линии.
  • Пол в помещении должен быть ровным, влажность не должна превышать установленные нормы во избежание коррозии оцинкованного фланца и поверхности бака.
  • Устройство лучше подключать при помощи гибкого напорного шланга в оплетке из нержавейки и диаметром накидных гаек в один дюйм, выполненных из латуни. Следует избегать шлангов для подачи с алюминиевой оплеткой и монтажными муфтами из дешевого силумина – хрупкого сплава алюминия с кремнием.

Рис. 10 Схема подключения гидроаккумулятора для индивидуальных систем водоснабжения

Обвязка расширительного бака

Перед тем, как подключить гидроаккумулятор для систем индивидуального водоснабжения, готовят комплектующие: автоматические приборы, фильтры и переходные муфты для подсоединения труб ПНД. После подсоединения электронасоса к водопроводу из ПНД при помощи переходных пластиковых муфт и размещения его в скважине, дальнейшие работы по сборке проводят в следующей последовательности:

  1. На выходе водопроводной трубы из насоса устанавливают шаровый кран и фильтр грубой очистки для удаления песка из воды.
  2. После фильтра устанавливают тройник с диаметром отверстий, подходящих для подключения автоматики. В его верхний отвод вкручивают переходную муфту для подключения реле.
  3. Для присоединения к электронасосу реле давления и манометра применяется стандартный пятивходовой штуцер, который подключают к тройнику при помощи переходника.
  4. На выходе штуцера с наружной резьбой диаметром 1 дюйм устанавливают шаровый кран с накидной гайкой – это позволит производить ремонт и замену узлов, не сливая воду из всей водопроводной магистрали.
  5. К выходному отверстию штуцера с внутренней резьбой 1 дюйм при помощи гибкой подводки присоединяют гидроаккумулятор.
  6. Далее в пятивыводной штуцер устанавливают манометр и реле давления, в тройник вкручивают реле сухого хода.
  7. В конце подключают электрический кабель питания к реле – монтаж автоматики на этом можно считать законченным.

Многие предпочитают устанавливать всю автоматику с помощью соединительных штуцеров непосредственно на выходе гидроаккумулятора – такая методика не требует подводного шланга.

Рис. 11 Как установить гидроаккумулятор в линию

Гидробак является основным узлом в автоматических системах управления электронасосами, необходимым для снижения нагрузки на водопроводную магистраль и уменьшения циклов срабатывания насосного оборудования. Его соединение с трубопроводом и настройку довольно просто сделать своими руками при использовании простейшего сантехнического инструмента. Для правильного выбора расширительного бака можно использовать не слишком сложную формулу или определить его параметры приблизительно в зависимости от объема подачи или мощности насосного оборудования.

Незаменимым устройством в современных системах водоснабжения является не только насос. Очень часто его дополняют гидроаккумулятором, который может идти как в комплекте с насосом, так и покупаться и устанавливаться отдельно.

Бак-гидроаккумулятор Wester, горизонтальный.

Установка гидроаккумулятора является весьма полезным решением, которое повышает качество работы системы водоснабжения. Рассмотрим подробнее, как именно устроен этот механизм, как он работает и как монтируется.

1 Устройство гидроаккумулятора и принцип его работы

Вначале опишем устройство гидроаккумулятора: это емкость, имеющая металлический корпус, внутри которого располагается мембрана (или же баллон, в зависимости от конструкции). Между ней и стенками корпуса создано давление – благодаря закачанному в пространство сжатому воздуху.

Чаще всего установка применяется в водоснабжении, однако также актуально применять гидроаккумулятор для отопления – для этого он также подходит.

Задачи механизма следующие:

Пример расположения гидроаккумулятора, коллектора и водонагревателя.

  1. Накопление воды.
  2. Поддержание стабильного давления в системе.
  3. Обеспечение системы водой, когда насос не работает.

Принцип действия следующий: вода поступает в мембрану, нагнетаемая насосом. Мембрана наполняется и заполняет пространство внутри корпуса (естественно – на определенный объем).

С другой стороны на воду начинает давить закачанный воздух, тем самым вытесняя ее в систему водоснабжения. Насос при этом работает до определенного момента – пока давление воды внутри бака не достигнет определенного предела.

После этого агрегат отключается, и «выдавливать» воду в сеть начинает уже воздух, воздействующий на мембрану. Ну а когда жидкость из емкости уйдет, и давление опустится до определенной (только теперь уже – минимальной) отметки – насос вновь включится в работу от автоматического блока управления.
к меню ↑

1.1 Классификация

Ассортимент изделий на рынке достаточно обширный, так что для покупателя будет полезным предварительно узнать о том, какими именно они бывают, как классифицируются, и какую модель лучше выбрать.

Различия заключаются в целом ряде факторов, о каждом из которых следует упомянуть.

Горизонтальные баки-гидроаккумуляторы различного объема.

По расположению емкости — устройство может быть как горизонтальным, так и вертикальным.

По виду рабочей части — тоже могут быть отличия. В этом плане имеется две вариации: мембрана или баллон. В первом случае пространство внутри емкости разделено на две части мембраной: в одну – поступает вода, во вторую – закачан воздух.

Во втором случае внутри емкости заключен эластичный баллон, в который поступает жидкость, а воздух – закачан в свободное пространство между его стенками и стенками корпуса.

Отдельно требуется упомянуть об объеме – это, по сути, ключевой параметр любой емкости. Наиболее популярные типоразмеры – это 24, 50, 100 и 200 литров. Однако в продаже можно найти и емкости другого объема – на 6, 12 или наоборот – на 300 литров.

Бывают также и более крупные устройства – к примеру, гидроаккумулятор Aquasystem, который может быть объемом и до 2000 литров. Меньшую вместимость имеет гидроаккумулятор Reflex – наибольшая модель имеет объем 1000 литров. Такие же пределы имеет и гидроаккумулятор Wester.

Также детального внимания заслуживает материал, из которого выполняется мембрана (баллон). Это может быть либо бутил, либо каучук. Отличия достаточно серьезные:

Внешний вид мембраны различного объема.

  • бутил имеет верхний температурный предел в +99 градусов;
  • у каучука эта отметка ниже – только +50 градусов.

Это очень важный нюанс для тех, кто выбирает устройство для отопления. Однако чаще всего устройства современных производителей (тот же гидроаккумулятор Aquasystem) используют именно бутил.

Ну и напоследок требуется упомянуть о производителях изделий этого типа. Выше уже упоминалось несколько наименований, которые пользуются наибольшей популярностью. Это гидроаккумулятор Wester и Aquasystem. Модели этих марок входят в высокобюджетный сегмент, однако и качество имеют соответствующее.

Гидроаккумулятор Reflex стоит уже дешевле, но при этом в качестве практически не уступает. Помимо этих названий можно выделить еще Джилекс, который достаточно популярен на российском рынке своими положительными качествами: дешевизной и надежностью.
к меню ↑

1.2 Как правильно произвести расчет объема гидроаккумулятора?

В принципе основной момент, заслуживающий внимания – это объем бака. Выше также упоминалось и об материале мембраны (баллона), однако для отопления такие устройства используются реже, поэтому внимание мы будем заострять именно на вместимости.

Сразу следует сказать, что модели на несколько сотен литров (к примеру – гидроаккумулятор Aquasystem VAV 2000 на 2000 литров или гидроаккумулятор Wester Line WAV 1000 – на 1000) подходят для обеспечения водой больших зданий (гостиниц, больниц – к примеру).

Пример размещения вертикального гидроаккумулятора в санузле.

Для обычного жилого дома такого объема будет много, и покупка такой модели будет излишней тратой денег. Тем более что стоят они достаточно много: к примеру, упомянутый гидроаккумулятор Wester Line WAV 1000 обойдется более чем в 10 тысяч долларов, а гидроаккумулятор Aquasystem VAV 2000 – и вовсе в три десятка.

Для коттеджа, в котором постоянно проживает 3-4 человека, будет достаточно емкости объемом до 100-200 литров (и это – с огромным запасом). Часто покупатели в таких условиях ограничиваются моделями по 24-50 литров (к примеру – гидроаккумулятор Aquasystem VAV 50 или гидроаккумулятор Wester Line WAV 50).

Увеличение до 100-200 литров актуально, если жителей в доме больше, и/или имеется большое количество точек водозабора (2 унитаза и 5-10 кранов – к примеру). В этом случае следует обратить внимание на гидроаккумулятор Wester Line WAV 100 или гидроаккумулятор Aquasystem VAV 100.

Для точности приведем более подробный расчет, который поможет покупателю точнее подобрать подходяще устройство.

Изначально напомним, что насос с усредненными характеристиками может включаться не чаще 1 раза в 1 минуту (в противном случае работа автоматического блока может ухудшаться). При этом его производительность составляет около 28-30 литров в минуту (т.е. около 1.8 «кубов» в час) – опять-таки, в среднем, для большинства бытовых моделей.

Делая расчет, требуется также учитывать, в любой модели объем воды составляет только половину емкости – остальное пространство занимает сжатый воздух. Таким образом можно подсчитать, что при использовании насоса с упомянутой производительностью Вам подойдет бак на 60-80 литров (к примеру – все тот же гидроаккумулятор Aquasystem модели VAO 80).

Если взять устройство с запасом, которое позволит снизить количество автоматического включения-выключения насоса – то можно обратить внимание на гидроаккумулятор Wester Line WAO 100 (соответственно, на 100 литров).

Вышеприведенный расчет является примерным – на самом деле для того, чтобы выбрать устройство, требуется учитывать еще некоторые параметры. Речь идет об объемах, расходуемых в пиковое время (утром и вечером).

Пример расположения вертикального бака-гидроаккумулятора в помещении.

Для этого требуется знать расход основных потребителей:

  • туалет – до 1.3 литра в минуту;
  • душ – до 10 литров;
  • мойка/раковина – до 8 литров.

Выполнив нехитрый расчет – сложив числа – можно понять, что упомянутых выше 60-80 литров вполне достаточно: ведь в сумме получается только 20 литров. А вот если в Вашем доме много людей, которые утром используют 2 санузла – тогда лучше задуматься о покупке модели вместительнее (гидроаккумулятор Reflex DE 100 на 100 литров или уже упоминавшийся гидроаккумулятор Wester Line WAO 100).

Ну а если планируется запитывать от емкости еще и полив в летнее время года – тогда уже актуальным будет покупка бака на большее количество литров: к примеру такого, как гидроаккумулятор Aquasystem VAO 200.

На всякий случай упомянем о расценках на столь часто упоминаемые модели – покупателю наверняка будет полезно узнать и об этом:

  • гидроаккумулятор Reflex DE 80 HW – около 150$;
  • гидроаккумулятор Wester Line WAO 50 – около 75$;
  • гидроаккумулятор Aquasystem VAV 80 – около 100.

Цифры в маркировке моделей обозначают, само собой, вместимость, указываемую в литрах.

Ну а для тех, чей расчет показал слишком большое число – будет актуальным выбрать модели крупнее:

Гидроаккумулятор в разрезе: внутреннее устройство емкости.

  • гидроаккумулятор Reflex DE 200 (на 200 литров, соответственно) – около 280$;
  • гидроаккумулятор Wester Line WAV 300 – около 300$;
  • гидроаккумулятор Aquasystem VAV 200 – около 450$.

При выборе учитывайте еще и следующие моменты:

  • меньше объем – чаще включается насос;
  • меньше объем – чаще и сильнее меняется давление в водопроводе.

Вдобавок во вместительном баке можно просто-напросто «хранить» больше воды, и если внезапно пропадет электричество – у Вас будет больший запас.
к меню ↑

2 Этапы и нюансы монтажа

С тем, как выполнить расчет и как выбрать устройство – разобрались. Теперь же требуется упомянуть о том, как именно выполняется подключение гидроаккумулятора к системе водоснабжения. При желании эту работу можно выполнить своими руками – если следовать приведенным ниже советам, то сложностей возникнуть не должно.

При этом не важно, какая именно модель подключается – гидроаккумулятор Reflex на пару десятков литров или же бак на 300 литров.

Подготовка выглядит следующим образом:

Пример подключения гидроаккумулятора к водопроводной системе.

  1. Прежде всего – нужно выбрать место, где будет стоять оборудование: станция автоматического водоснабжения и, собственно, сам бак. Их не обязательно располагать рядом, но чаще всего это делается именно так.
  2. Проверяется давление внутри емкости. Необходимо, чтобы этот показатель был примерно на 0.2-1 атмосферы ниже, чем параметр, установленный на реле автоматического пуска насоса. В противном случае его можно (и нужно) подрегулировать своими руками.

Теперь требуется позаботиться о необходимых деталях для подключения:

  1. Штуцер, имеющий 5 выходов: для самого бака, для реле автоматического включения, для манометра, для насоса и, собственно, для самой водопроводной линии.
  2. Манометр (со шкалой до 10 атмосфер).
  3. ФУМ-лента (для герметизации соединений).
  4. Реле регулировки давления.

Теперь – рассмотрим, как именно своими руками можно произвести подключение:

  1. Штуцер подсоединяется к емкости, используя шланг.
  2. К другим выходам штуцера подключаются манометр, реле, насос и водопроводная труба. Каждое соединение предварительно уплотняется ФУМ-лентой.

По завершению работы следует выполнить пробный пуск насоса – чтобы определить герметичность системы. Для этого требуется тщательно осмотреть места соединения: по ним не должно быть утечек.

Подключая своими руками реле давления, обязательно и очень внимательно смотрите на метки, которые нанесены под его крышкой. Их две – это «Сеть» и «Насос», и перепутать их ни в коем случае нельзя. Возможно, что этих меток и вовсе не окажется (бывает и такое у некоторых моделей) – в этом случае своими руками подключение рекомендуется не выполнять, а воспользоваться помощью электрика.
к меню ↑

Принцип работы гидроаккумулятора для водоснабжения и советы по выбору

Гидроаккумулятор, он же накопительный, напорный или расширительный бак — необходимый элемент для закрытой системы водоснабжения в любом частном доме. Чтобы правильно подобрать и использовать такой накопитель, не помешает изучить принцип работы гидроаккумулятора, виды, причины поломок и способы их устранения. Кроме того, не помешает разобраться, чем отличаются баки красного и синего цвета.

Как устроен и работает гидроаккумулятор?

Гидроаккумуляторы нередко называют мембранными баками, поскольку внутри у такого устройства находится специальная резиновая прокладка — мембрана. Она делит емкость на две части. С одной стороны от мембраны находится вода, с другой — воздух или интертный газ. Также гидробак обычно снабжен отверстием для подачи воды и манометром, который отражает давление воздуха.

Обычно гидробак состоит из металлического корпуса и резиновой мембраны. Кроме того, устанавливается золотник, регулирующий подачу-стравливание воздуха, а также фильтр, чтобы удалять мелкие загрязнения

Вода подается в систему водоснабжения с помощью насоса и закачивается в бак. В результате давление газа в гидроаккумуляторе с автоматикой возрастает. Когда оно достигает предельно допустимого значения, система автоматического управления отключает насос и подача воды прекращается.

На схеме наглядно представлен принцип работы гидробака в системе водоснабжения. Устройство управляется с помощью автоматики, что повышает сроки его эксплуатации

Постепенно вода из бака расходуется. Давление понижается, достигает минимального заданного предела, после чего система автоматического управления включает насос. Вода поступает в бак, пока давление не достигнет установленного значения, насос отключается и т. д.

Вам также пригодятся наши рекомендации по выбору насосной станции для водоснабжения дома: https://aqua-rmnt.com/vodosnab/nasos/nasos-stancii/kak-vybrat-nasosnuyu-stanciyu-dlya-doma-i-dachi-poleznye-sovety.html.

Для чего необходим такой накопитель?

При наличии гидробака цикл включения-отключения насоса происходит только при необходимости наполнить бак достаточным запасом воды. Если бы гидроаккумулятора не было, насос включался бы каждый раз, когда кто-то из домочадцев открывает кран. Наличие накопительного бака в системе позволяет:

  • значительно увеличить срок эксплуатации скважинного насоса;
  • предупредить вред от возможных гидроударов в системе;
  • поддерживать в системе определенное давление;
  • предотвратить поломки элементов системы водоснабжения и сантехнического оборудования.

Очевидно, что гидроаккумуляторы для водоснабжения закрытого типа просто необходимы. О роли накопительного бака в системе водоснабжения подробно рассказано в следующем видеоматериале:

macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,40,0″>

Виды мембранных баков и их особенности

Различают вертикальные и горизонтальные гидробаки, которые по разному крепятся в месте установке. Есть еще один важный момент. В той части гидробака, которая содержит воду, со временем может накапливаться небольшое количество воздуха. Этот воздух следует периодически удалять, чтобы в систему не попали довольно опасные для нее воздушные пробки. В вертикальных емкостях воздух скапливается вверху и для его отведения используется специальный ниппель.

С горизонтальными гидробаками все несколько сложнее. Для стравливания скопившегося воздуха здесь понадобится не только ниппель, но и шаровой кран, а также канализационный слив.

Владельцам небольших гидробаков, емкость которых составляет менее 100 л, необходимо избавляться от избытка воздуха иначе. Для этого следует:

  1. Отключить электропитание.
  2. Открыть кран смесителя.
  3. Дождаться, пока бак опустеет.
  4. Закрыть кран.
  5. Подключить систему к электропитанию, чтобы бак снова наполнился.

Избыточный воздух выйдет вместе с водой. Эту процедуру следует проделывать не реже одного раза в месяц.

Гидробаки красного цвета предназначены для систем горячего водоснабжения. Хотя мембрана в них выполнена из довольно прочной резины, их не следует использовать для подачи холодной воды

Производители предлагают гидробаки красного и синего цвета, а также бесцветные. Синие устройства предназначены для использования в системе холодного водоснабжения. Для изготовления мембраны в таких баках используют пищевую резину, безопасную для здоровья людей. Красные гидробаки предназначены для систем отопления и горячего водоснабжения. Их для холодной воды использовать не рекомендуется, поскольку мембрана в таких баках изготовлена из другой резины. Кроме того, рабочий порог давления у синих гидробаков выше и достигает 8 Bar.

Обычно вода поступает в накопитель снизу, а сверху, как уже отмечалось, находится ниппель, через который отводят воздух. Поэтому в каждом устройстве имеется два резьбовых соединения (обычно дюймовые или в полдюйма), которые не следует путать. На верхний ниппель нередко устанавливают автоматическое устройство для отведения воздуха.

Иногда бывают ситуации, когда вода подается в гидробак сверху. Считается, что в этом случае автоматическое отведение воздуха не понадобится. Но следует позаботиться о фильтре, чтобы в систему не попадали частички песка или другие загрязнения.

Обратите внимание! Потребителю предлагают самые разнообразные модели гидробаков зарубежного и отечественного производства. Не все импортные устройства адаптированы для российской системы водоснабжения, что заметно снижает сроки их бесперебойной эксплуатации. Как показала практика, отечественные гидробаки высокого качества служат дольше.

Обратите внимание на материал об устройстве и принципах работы насосных станций: https://aqua-rmnt.com/vodosnab/nasos/nasos-stancii/ustrojstvo-i-princip-raboty-nasosnoj-stancii.html

Причины поломок и способы их устранения

Самая уязвимая часть гидробака — резиновая мембрана. В процессе эксплуатации она постоянно подвергается растягиванию, а затем сокращается. Постепенно резина теряет эластичность и разрывается. О возникновении проблем с гидробаком могут свидетельствовать следующие симптомы:
вода поступает из системы небольшими порциями при высоком давлении, кран как-будто «плюется» водой;
стрелка манометра резко достигает больших значений и затем сразу же снижается до нуля.

Резиновые мембраны для гидробаков могут иметь различные формы и размеры. При замене мембраны следует использовать изделие, предназначенное для конкретной модели гидробака

Чтобы убедиться в том, что мембрана порвана, необходимо нажать на золотник ниппеля, чтобы выпустить воздух из накопительного бака и определить какое давление воздуха имеется в гидроаккумуляторе. Если при этом стрелка манометра сразу же пойдет вниз, значит воздуха, который обеспечивает необходимое давление, в гидробаке осталось очень мало. Необходимо полностью стравить воздух, если после этого из золотника потечет вода, значит мембрана точно порвана, необходим ремонт. Если же вода не пошла, мембрана цела, а воздух уходит из емкости через появившиеся щели, неисправные соединения или золотник.

О проблемах с гидробаком в системе горячего водоснабжения может свидетельствовать небольшая течь, которая появляется у предохранительного клапана водонагревателя. Действовать следует точно также: нажать на ниппель золотнитка, оценить количество воздуха, стравить его полностью и по наличию или отсутствию воды определить, цела ли мембрана гидробака.

Заменить мембрану в гидробаке не так уж сложно, кроме того, это значительно дешевле, чем ставить новое устройство. Для ремонта понадобится:

  1. Приобрести новую мембрану, точно соответствующую порванной.
  2. Аккуратно разобрать гидробак, отвинтив соединительные болты.
  3. Вынуть порванную мембрану.
  4. Установить на ее место новую мембрану.
  5. Собрать гидробак.
  6. Равномерно затянуть все болты.

Главная опасность при этом состоит в том, что неумелое обращение с устройством может привести к соскальзыванию края мембраны внутрь металлического корпуса. В результате работу придется переделывать. Чтобы этого не случилось, рекомендуется затягивать соединительные болты постепенно, чтобы обеспечить равномерное натяжение мембраны. Проблемы возникают, когда один болт полностью затянут и только после этого начинают работу со следующим. Край мембраны при этом смещается и может соскользнуть.

О распространённых неисправностях и о том, как их устранить, вы узнаете в нашем материале: https://aqua-rmnt.com/vodosnab/nasos/nasos-stancii/remont-nasosnoj-stancii-svoimi-rukami.html

Еще одна ошибка — использование герметика в местах соединений. Применение таких составов приводит к уменьшению трения между резиной и металлом. В результате край мембраны смещается, а плотность соединения уменьшается, что в будущем может вызвать протечку воды.

Оцените статью: Поделитесь с друзьями!

Система водоснабжения частного дома с гидроаккумулятором

Частный дом современного человека насыщен бытовой сервисной техникой, имеющей постоянное подключение к системе водоснабжения. Бойлеры, посудомоечные машины, котлы отопления с внутренним контуром горячей воды проектировались и изготавливались в расчете на стабильное давление воды в системе водоснабжения дома. Стоимость любого из перечисленных бытовых приборов будет значительно выше цены стандартного бытового гидроаккумулятора. А если водоснабжение выполняется через насос и скважину, без демпфирующего бака попросту не обойтись.

Зачем нужен гидроаккумулятор

Аргументов установить гидроаккумулятор для системы водоснабжения существует более чем достаточно. Мало того, даже в квартирах и домах с перебоями централизованного водоснабжения зачастую используется гидроаккумулятор. Чаще всего владельцами частных домов установка гидроаккумулятора в систему водопровода выполняется из следующих соображений:

  • Стоимость простенького гидроаккумулятора колеблется от 15 долларов за 24-х литровую модель до 45 долларов за 50-ти литровый бак. Это значительно дешевле ремонта котла индивидуального отопления или посудомоечной машины;
  • Производителями бытовых насосов для скважин сглаживающее действие гидроаккумулятора для систем водоснабжения давно признанов качестве наиболее эффективного средства борьбы с колебаниями давления воды;
  • При грамотном планировании системы водоснабжения гидроаккумулятор позволяет серьезно удлинять ресурс насоса, делать его работу более стабильной и даже экономить электроэнергию при переходе на ночной тариф работы.

Простое устройство гидроаккумулятора позволяет легко устанавливать, обслуживать и ремонтировать прибор своими руками. Система водоснабжения частного дома с гидроаккумулятором получается более простой и надежной.

Важно! Любые ухищрения с установкой на насос обратных компенсирующих магистралей или дополнительных электрических пусковых приспособлений оказываются малоэффективными в сравнении с гидроаккумулятором.

Устройство и принцип работы гидроаккумулятора в системе водоснабжения

Популярности прибора также способствовало достаточно простое внутреннее устройство. По сути, это стальной баллон из тонколистового металла, внутри которого помещена двухслойная оболочка из синтетического бутилового каучука. При заполнении оболочки водой она расширяется и увеличивается в размерах, параллельно сжимая газ или воздух, находящийся в пространстве между стенками бака и резиной.

При падении напора воды в системе водоснабжения запас жидкости в гидроаккумуляторе, давление воздуха и стягивающие силы каучуковой оболочки выдавливают часть воды в водопроводную трубу, тем самым компенсируя изменения.

Принципиальной разницы между гидроаккумуляторами большого и малого объема нет, устроены они одинаково, с небольшими отличиями в креплении резинового элемента в металлической колбе.

Если отбор воды в скважине осуществляется с глубоких меловых водоносных пластов, или температура жидкости ниже 7-8оС, на поверхности в трубах системы водоснабжения обязательно будет выделяться ранее растворенный воздух. В этом случае необходимо устанавливать в кессоне, рядом с насосным оборудованием, вертикальный вариант гидроаккумулятора, позволяющий сбрасывать часть выделившегося воздуха через дренажный клапан.

Такой вариант также предпочтителен для систем центрального водоснабжения городских квартир и систем отопления. Правда, в последнем случае прибор должен иметь специальное исполнение теплостойкой каучуковой мембраны, их легко отличитьпо красной окраске баллона.

Как подобрать и установить нужный вариант гидроаккумулятора

Наиболее правильным будет решение выбрать и установить гидроаккумулятор своими руками. Сделать это несложно, необходимо только выполнять рекомендации производителя насоса и гидроаккумулятора. Кроме того, вы будете уверены в качестве установленного прибора.

Выбор параметров гидроаккумулятора

Существует прямая зависимость размеров системы водоснабжения в доме, количества точек отбора воды – кранов, душа, кухонной техники, туалета и минимального объема воды в системе гидроаккумуляторе. При выборе необходимо ориентироваться на общий объем воды в системе водоснабжения в доме. Почему?

В стандартном баллоне половину объема занимает воздух или газ, чаще всего азот. Например, в 50-ти литровом баллоне максимальный запас воды составит не более 25-30 л. Устройство будет эффективно компенсировать падение давления только на первых 40-50% расхода запаса воды, далее давление воздуха в камере баллона станет меньше, и выдавливать воду в трубу будет только эластичная оболочка.

Можно воспользоваться самой простой методикой подбора эффективного объема для гидроаккумулятора или попытаться считать по формулам, рекомендуемым производителями бытовых водяных насосов. Возможно, последний случай более точен, но на практике его используют редко.

Для практического определения достаточно открыть кран поочередно на всех точках потребления воды при работающем насосе. Измерив и пересчитав, сколько литров воды суммарно вытекло бы за одну минуту на всех точках, получим минимальный запас для гидроаккумулятора.

Важно! По сути, мы получили только минимальный объем воды в каучуковой оболочке. Это число необходимо перевести в размерность объема гидроаккумулятора.

Например, если за минуту у вас набралось в сумме 30 л воды, значит, выбирать необходимо ближайший верхний объем в 70-75 л.

Вторым важным параметром, который необходимо контролировать и периодически регулировать своими руками, является давление воздуха в камере вытеснения. В салоне вам продадут бак с заводским давлением в 1,5 Бар или атмосфер.

После подключения устройства в систему водоснабжения частного дома потребуется откалибровать давление воздуха так, чтобы давление при среднем наполнении оболочки было на 10-15% меньше давления воды в трубах при работающем насосе. Чаще всего перед запуском этот параметр поднимают до 2,5 Бар подкачкой воздуха в бак компрессором. После выставления максимального и минимального давления на пружинах управляющего реле в кессоне лишний воздух из воздушной камеры устройства стравливают до необходимого значения.

Делать это нужно очень осторожно. Больше полезной информации можно почерпнуть из видео:

Как установить своими руками гидроаккумулятор для систем водоснабжения

Существует два основных способа установки гидроаккумулятора в кессоне и в помещении дома. Первый способ считается более оптимальным для обеспечения устойчивой работы защиты насоса и системы водоснабжения. Чем ближе находится гидроаккумулятор к насосу, тем эффективнее защищаются магистрали системы водоснабжения от самой страшной высокочастотной вибрации, возникающей при работе насоса.

При этом не имеет значения, какой именно вариант насосного оборудования вами используется. Подключение бака осуществляется через пятивыводной штуцер, если в системе водоснабжения имеется магистраль с обратным перепуском воды на насос. Чаще всего это необходимо для погружных насосов.

Для центробежного достаточно четырехвыводного штуцера, как на схеме. Сборку всей системы вполне по силам выполнить своими руками, если вы знаете правила пакования соединений штуцер-гайка водопроводных магистралей.

Второй вариант предусматривает установку гидроаккумулятора в систему водоснабжения в приспособленном помещении дома. В этом случае можно получить некоторые дополнительные преимущества:

  1. Бак гидроаккумулятора размещается в закрытом помещении, меньше подвергается негативному влиянию перепадов температур, мороза, жары, высокой влажности, способствующих развитию коррозии корпуса и потере герметичности каучуковой оболочки;
  2. Под размещение прибора можно выделить больше места или убрать его в подвальное помещение. В этом случае значительно проще проводить периодический осмотр, обслуживание и при необходимости подкачку воздуха;
  3. В отличие от кессона, в доме можно установить гидроаккумулятор большой емкости, который будет играть роль не только защиты от гидравлических вибраций и ударов, но и послужит резервом воды.

Важно! Последний критерий в ряде случаев является определяющим, если в доме используется двухтарифный счетчик.

Закачивая воду в бак в ночное время, можно легко добиться экономии в 60-70% от затрат на работу насоса, при этом иметь огромный резерв воды и увеличить ресурс работы насоса, как минимум, на 100-150%.

Особенности эксплуатации гидроаккумулятора

Как любой механический прибор, гидроаккумулятор выходит из строя при неправильной эксплуатации. В среднем срок службы устройства может достигать 10-12 лет, но только в том случае, если нагрузка на резиновую оболочку не превышает максимально допустимой.

Чаще всего каучуковая груша выходит из строя по следующим причинам:

  • Низкое давление воздуха в воздушной камере. В этом случае при наполнении водой оболочка растягивается до максимальных размеров, при этом в области крепления фланца в горловине ее стенки испытывают нагрузку на 20-30% выше допустимой, что рано или поздно приведет к разрушению материала. Как заменить мембрану или грушу своими руками, можно узнать из видео:
  • Накопление конденсата. Воздушная камера гидроаккумулятора практически изолирована от внешней среды, но, как ни странно, в ней все равно могут собираться микрокапли влаги и конденсата. Наличие воды и воздуха создает идеальные условия для коррозии металла, поэтому знатоки нередко предпочитают гидроаккумуляторы из нержавейки для системы горячего водоснабжения или в случае, если вода богата солями;
  • Плохое качество защитного лакокрасочного покрытия. Именно с этого критерия необходимо начинать выбор гидроаккумулятора для системы водоснабжения своего дома. Лучшими характеристиками обладают эпоксидные лаки с предварительным грунтованием и фосфатированием металла. Их можно легко узнать по очень ровной и твердой глянцевой поверхности.

Заключение

Несмотря на тот факт, что основная масса специалистов в сфере водоснабжения рекомендует рассчитывать емкость гидроаккумулятора по формулам в зависимости от мощности насоса, в большинстве случаев на практике владельцы частных домов предпочитают приобретать и устанавливать два гидроаккумулятора. Один – малой емкости, используется для подключения к насосу в кессоне. Для системы водоснабжения дачи или загородного дома этого достаточно.

Для системы водоснабжения частного дома постоянного проживания зачастую приобретают второй прибор увеличенной емкости, в котором вода накапливается за ночь и расходуется в течение дня без включения насоса.

Аккумулятор для систем водоснабжения Принцип действия, устройство и конфигурация (видео)

Функционирование водораспределительной системы, даже если она автономная, не всегда может похвастаться стабильностью. Среди самых неприятных и даже опасных проблем — перепады давления в трубах, которые могут спровоцировать Низкий напор воды, отказ от бытовой техники и удары молотком. Как уберечь водопровод от этих негативных последствий? Наиболее правильное решение — установить аккумулятор.Чтобы узнать больше о вас об этом приборе и дать рекомендации по выбору подходящей модели, затем мы поговорим об устройстве, принципах работы и функциях аккумулятора, а видео разберем правила подключения и настройки оборудования.

Содержимое

  • Как работа гидроаккумулятора?
  • Зачем нужен гидроаккумулятор?
  • Как выбрать аккумулятор?
  • Что такое схема подключения гидроаккумулятора?
  • Как работает гидроаккумулятор: Видео
  • Аккумулятор для воды: фото

Как работа гидроаккумулятора?

Принцип работы аккумулятора зависит от его устройства, поэтому схему работы устройства следует читать с учетом его конструктивных особенностей.На основе последних агрегаты делятся на два типа: диафрагменные цилиндры.

мембранный аккумулятор Представляет собой емкость двух камер, находящихся под давлением, воздуха и воды, которые разделены резиновой эластичной мембраной. Устройство работает следующим образом:

  • при включении насоса под заданным давлением водяная камера заполняется водой, а воздух во второй камере начинает сжиматься;
  • , когда уровень давления поднимается до пика, и насос выключается при открытии водопроводной трубы сильно сжатый воздух выталкивает воду из мембраны в трубке;
  • по мере опорожнения бака давление уменьшается и когда оно достигает минимального показателя, насос возобновляет свою работу и снова начинает перекачивать воду в соответствующую камеру.

мембранный аккумулятор

Баллонный аккумулятор — толстостенный сосуд, внутри которого находится резиновый баллон. Работает это так:

  • После заполнения цилиндра насоса водой и вокруг него с заданным давлением идет воздух;
  • , когда давление увеличивается до максимальной уставки мощности, насос отключается;
  • , когда пользователь открывает кран околобаллонного воздуха, из пространства начинает вытесняться вода, и она попадает в трубу;

Баллонный аккумулятор

  • когда резервуар опорожняется, давление понижается и насос снова включается.

Совет. Если вы решили остановиться на мембранном аккумуляторе, выберите модель со съемной мембраной — в случае деформации ее легко заменить.

Зачем нужен гидроаккумулятор?

Основная функция гидроаккумулятора в системе водоснабжения:

  1. Защита насосного оборудования от внезапного износа — поскольку в баке скопилась вода, насос срабатывает после каждого открытия клапана, но только в случае полного опорожнения бака.Такая схема работы позволяет насосу запасать неиспользованный цикл включения / выключения, тем самым продлевая срок его службы.
  2. Поддержание стабильного давления в водопроводе — гидроаккумулятор обеспечивает постоянный уровень давления в системе даже после остановки насоса.
  3. Защита системы от скачков давления воды — гидробак поддерживает постоянное давление воды при открытии нескольких кранов.
  4. Демпфирующий гидравлический удар — устройство не позволяет активировать насос при ударе, что предохраняет трубу от преждевременной деформации.
  5. Создание резерва воды — благодаря запасу водонагревателя в домашнем хозяйстве можно пользоваться водой даже в случае отключения электроэнергии, что особенно часто бывает в загородных поселках.

Как выбрать аккумулятор?

Основополагающий критерий любой гидроаккумулирующей системы водоснабжения — объем. Как определить оптимальную емкость бака для собственных нужд? Здесь необходимо учитывать четыре важных фактора: насосную мощность оборудования; количество домохозяйств, в которых есть проточная вода; количество точек отбора проб, включая не только вентили и выходы сантехника, но и выходы для бытовой техники; максимальное количество пусков / простоев насосного оборудования в час.

Когда по устройству важно правильно рассчитать сумму

Специалисты вывели определенные рекомендации по расчету объема гидроаккумулятора. Например, если количество домохозяйств меньше трех, а производительность насоса составляет около 2 м³ / ч, то у вас будет достаточно емкости бака на 24 литра. Если количество потенциальных пользователей варьируется от четырех до восьми, а производительность насоса составляет 2,5 м³ / час, купите гидрорезервуар объемом 50 литров.

Но мы смотрели на резервуары минимального объема для удовлетворения бытовых нужд.Если вы покупаете гидроаккумуляторы для сохранения большой массы воды на случай длительных отключений электроэнергии, их объем может быть неограниченным. Хорошее решение для таких ситуаций — приобретение бака для подключения к нему дополнительных резервуаров.

Совет. Покупая резервуар, имейте в виду, что чем меньше объем, тем больше возникает необходимости включать насос и тем выше риск преждевременного износа. Как правило, максимальное количество включений / выключений насоса колеблется в пределах 20-30 циклов в час — все вышеизложенное неизбежно приводит к деформации аварийной установки.

Что такое схема подключения гидроаккумулятора?

Основные этапы сборки гидроаккумулятора в водопроводе:

  1. Обозначить место расположения бака и закрепить его на рабочей поверхности с помощью креплений на резиновых подушках. Наземное оборудование.
  2. Подготовить пятивыводной штуцер. Подключите его к гидроаккумулятору с помощью штуцера.
  3. Подсоедините выходной штуцер манометра, шланг / трубу от насоса, реле давления и трубу водораспределительной сети.

Совет. При подключении к соединению рабочих узлов важно обеспечить максимальную герметичность резьбовых соединений — может использоваться ФУМ-ремень для плотной посадки деталей.

После установки необходимо настроить аккумулятор:

Подключение гидроаккумулятора

  1. Проверить давление внутри бака — должно быть 1,5 атм. Для измерений используйте манометр — желательно, чтобы это был электронный или механический автомобильный прибор, так как они наиболее точные.Если давление ниже нормы, нагнетание воздуха в соответствующий отсек бака.
  2. Настроить реле давления — приподнять крышку прибора и через большую гайку выставить максимальное давление P, а через маленькую ΔP — минимальное. Для обеспечения нормальной работы бытовых электроприборов и водопровода достаточно диапазона давления 1,5-2,8 / 3 атм.
  3. Система запуска — после начала работы убедитесь, что гидроаккумулятор на два момента: течь в стыках и повышенное давление.Если утечек нет, а давление постоянно повышается до пика, а насос выключен, это означает, что оборудование работает нормально.

Таким образом, если вы хотите, чтобы ваша водная система постоянно радовала эффективной работой, без гидроаккумулятора точно не обойтись. Вот основные тонкости выбора и подключения оборудования — рекомендуем отложить инициативу и руководствоваться вышеперечисленными правилами, чтобы не ошибиться и успешно запустить водную систему с новым устройством.

Как работает гидроаккумулятор: Видео

Аккумулятор для воды: фото



8 Наиболее распространенные проблемы в системе удаленных клапанов с гидравлическим приводом на судах

Грузовое судно имеет множество типов оборудования, которое подключено к различным системам трубопроводов, по которым для эффективной работы подаются эфирное масло и вода. В танкере грузовые танки соединены с трубами, которые используются для погрузки и разгрузки груза.

Важная система трубопроводов судна, такая как система балластных вод, система грузовых трубопроводов, бункерные трубопроводы и т. Д., Снабжена клапанами с гидравлическим приводом для ограничения и управления потоком нефти / воды / груза по трубам простым, безопасным и простым способом. экономичный способ.

Прочтите по теме: Как работать с балластной системой судна

Система клапанов с гидравлическим приводом состоит из следующих основных частей:

1. Гидравлический блок питания:

Гидравлический силовой агрегат представляет собой комбинированную систему, которая подает, управляет и регулирует поток масла к гидравлическим клапанам, когда из поста управления двигателем или поста управления грузовыми автомобилями подается сигнал открытия или закрытия. Он состоит из следующих компонентов:

и. Приемник сигналов
ii. Гидравлический бак
iii. Насосы
iv. Уровнемеры
v. Манометры
vi. Сигнализация
vii. Фильтры

Блок питания будет управлять насосами в зависимости от давления в линии и подтверждать команду, подаваемую от ECR или CCR, на открытие или закрытие клапана (давление пуска и останова).

2. Насосы

Другой важной частью гидравлической операционной системы являются два насоса, оснащенные гидроагрегатом.Здесь один работает как основной, а другой как резервный насос, каждый из которых может одновременно открывать или закрывать клапаны за одну минуту.

Прочтите по теме: Типы насосов, используемых на судах

3. Аккумуляторы

Аккумуляторы — это устройства хранения давления, входящие в состав гидроагрегата. Емкость гидроаккумулятора должна быть достаточной для компенсации утечки масла в системе трубопроводов подачи гидравлической жидкости в течение не менее пяти минут и подачи масла для приведения в действие как минимум трех самых больших гидравлических клапанов в системе для переключения из закрытого в открытое положение или наоборот.

4. Привод:

Привод клапана — это узел поршня и цилиндра, который управляет клапаном в локальном положении. Он получает масло от гидроагрегата для управления клапаном.

Кредит: Викимедиа / Cdang

Прочтите по теме: Задвижка на кораблях

Наиболее частые проблемы, обнаруживаемые в судовой системе удаленных клапанов с гидравлическим приводом:

1. Гидравлический насос подачи не запускается:

Гидравлический насос подачи является основным источником управления клапанами дистанционного управления.В случае возникновения проблем с одним насосом необходимо запустить резервный насос, чтобы возобновить работу, при необходимости немедленно. Ниже приведены сообщения о том, что подающий насос установки не запускается:

— Не горит индикаторная лампа работы
— Активна сигнализация низкого давления масла
— Активна сигнализация низкого уровня масла

Прочтите по теме: 10 практических советов по обращению с насосами машинного отделения

Причины, по которым насос не работает:

а. Проблема с электричеством:

  • Низкое напряжение
  • Отключение провода
  • Проблема в электродвигателе

г.Проблема с насосом:

  • Двигатель заблокирован
  • Заблокирован насос

г. Проблема масла:

  • Утечка масла
  • Неправильная установка датчика уровня масла

Устранение вышеуказанных причин:

а. Проблема с электричеством

  • Проверить наличие напряжения
  • Проверить место контроля проводных соединений
  • Проверить мощность двигателя и обмотку

Прочтите по теме: Как найти замыкание на землю на борту судов?

г.Проблема с насосом:

  • Переключить на резервный насос
  • Проверить двигатель или насос на свободное вращение
  • Необходим капитальный ремонт двигателя или насоса

г. Проблема с маслом:

  • Проверить уровень масла
  • Проверить и устранить утечку
  • Убедитесь, что уровень в баке соответствует требованиям
  • Переустановить датчик уровня масла
  • Забит входной фильтр (если имеется)

2. Засоренный контур: В случае засорения контура масло, подаваемое правильно работающим насосом, не достигает клапана и затрудняет дистанционное управление.Ниже приведены наиболее частые причины засорения цепи:

а. Примеси:

  • Использование низкосортного масла
  • Неправильная очистка после капитального ремонта

Прочтите по теме: важные качества смазочного масла, которые следует учитывать при выборе смазочного масла на судах

г. Постороннее вещество:

  • Доступ к посторонним материалам при ремонте
  • Доступ к внешнему веществу при заливке масла

г. Неэффективная промывка

г. Картридж фильтра разрывной

Устранение вышеуказанных причин:

а. Примеси:

— Осмотр всей установки, чтобы найти причину доступа к загрязнениям
— Используйте гидравлическое масло хорошего качества в соответствии с предписаниями производителя
— Убедитесь, что система должным образом очищена после капитального ремонта

г. Постороннее вещество:

— Убедитесь, что система правильно очищена после ремонта
— Осмотрите бак после очистки на предмет оставленных тряпок / одежды

г.Промывка:

— Промыть всю установку

г. Разрыв или забит фильтр:

— Очистить фильтр
— Заменить картридж фильтра

3. Необычный шум от насоса:

Работающий насос при работе издает обычный шум. Инженер должен знать, как звучит штатная работающая машина (включая насосы). Ниже приведены наиболее распространенные причины необычного звука помпы:

а. попадание воздуха на всасывании насоса
b.повреждение деталей насоса
c. неисправна муфта мотопомпа

Устранение вышеуказанных причин:

а. Вход воздуха:

— Проверить герметичность всасывающего контура насоса
— Удалить воздух из контура

г. Детали насоса повреждения:

— Перейти на ул. насосом
— Капитальный ремонт поврежденного насоса
— Заменить подшипник

г. Неисправна муфта моторный насос

— Проверить муфту на наличие повреждений
— Проверить затяжку стяжных болтов
— Проверить соосность вала муфты двигатель-насос
— При необходимости заменить муфту

Чтение по теме: 7 общих проблем, обнаруженных в насосах на борту судов

4.Медленное движение клапана:

После подачи сигнала на управление гидравлическим клапаном от ECR или CCR; клапан должен полностью открываться или закрываться за определенное время. Задержка времени срабатывания клапана вызвана:

а. Неисправная работа регулирующего клапана
б. Забит редуктор потока
c. Засоренные фильтры
d. Низкое давление масла
эл. Низкая температура масла
f. Поврежден привод клапана

Устранение вышеуказанных причин:

а. Проверить работу регулирующего клапана
b.Проверить регулировку редуктора потока
c. Очистите засоренный редуктор потока
d. Очистите забитый фильтр
e. Проверить и поддерживать давление масла
f. Проверяйте и поддерживайте температуру масла
гр. Разогреть масло в холодную погоду 90–130 ч. Проверить работу привода
i. Обратный клапан крутящий момент

Связанная комната: Основы поиска и устранения неисправностей машинного отделения

5. Рывок клапана Работа:

Рывки гидравлического клапана не подходят для самого клапана, и это также приведет к неправильной работе клапана, т.е.е. задержка открытия / закрытия и скачок давления в системе.

Рывок клапана вызван:

а. Скачок давления
б. Воздух в системе
c. Неисправный гидроаккумулятор
д. Неисправен привод

Устранение вышеуказанных причин:

а. Выполнить продувку системы воздухом
b. Поддерживайте давление в гидроагрегате
c. Отремонтировать неисправный гидроаккумулятор
d. Отремонтировать неисправный привод

Дополнительная литература: 12 способов освоить процедуру несения вахты в машинном отделении

6.Клапан не закрывается полностью:

Клапан должен полностью закрыться, так как частично закрытый клапан может продолжить движение потока и привести к разливу жидкости. Ниже приведены наиболее частые причины неполного закрытия клапана:

а. Внутренняя утечка гидравлического привода
b. Слишком низкое давление масла
c. Проблема в предохранительном и обратном клапане
д. Клапан работает слишком медленно

Устранение вышеуказанных причин:

а.Проверьте давление на приводе после работы, если давление быстро снижается, проверьте уплотнение на приводе и, при необходимости, замените уплотнение на новое.
г. Поддерживать номинальное давление в гидравлической системе
c. Проверить работу предохранительного и обратного клапана. В случае неисправности заменить на новый
d. Проверьте время работы клапана и отрегулируйте его до рекомендованного времени, предписанного производителем

.

7. Клапан не движется:

Может случиться так, что клапан, на открытие или закрытие которого подается сигнал от CCR или ECR, вообще не движется.

Это может привести к разливу жидкости (если клапан застрял в открытом положении) или избыточному давлению в подключенной системе трубопроводов (если клапан застрял в закрытом положении). Отсутствие движения клапана вызвано:

а. Проблема в системе управления электрооборудованием

— Нет / низкое напряжение
— Отсоединение проводов
— Проблема в электрических частях — переключатели, электромагнитный клапан и т. Д.

г. Проблема в гидравлических приводах, клапанах или трубопроводах

— Катушка соленоида повреждена
— Негерметичные трубы
— Забит редуктор потока
— Застрял золотник регулирующего клапана или поршень привода
— Посторонний предмет в контуре клапана
— Поврежден привод

Устранение вышеуказанных причин:

а.Система электрического управления:

— Проверить наличие напряжения в цепи управления
— Проверить клеммы каждого кабеля
— Проверить каждое электрическое оборудование (например, переключатели, электромагнитные клапаны и т. Д.)

г. Компоненты гидравлической системы:
— Проверить работу электромагнитного клапана
— Проверить и отрегулировать редуктор потока
— Проверить гидравлические трубопроводы на утечки
— Проверить правильность работы привода
— Проверить давление масла

8. Индикация неправильного положения клапана:

Основное назначение клапана с гидравлическим управлением — дистанционное управление им. Панель управления ECR и CCR для таких клапанов снабжена индикатором положения, показывающим текущее положение клапана (открыто или закрыто). Если индикатор показывает неправильное положение, это может привести к путанице, и оператор может продолжить, не зная фактического или реального положения клапана.

Ниже приведены наиболее частые причины неправильной индикации положения:

а.Неисправный расходомер
б. Неисправное реле давления.
г. Проблема в панели индикаторов

Устранение вышеуказанных причин:

а. Капитальный ремонт расходомера
б. Проверьте и устраните неисправность с помощью реле давления
c. Проверьте и устраните неисправность панели индикаторов

Это одни из наиболее распространенных проблем, с которыми сталкиваются системы гидрораспределителей с дистанционным управлением, установленные на судах. Однако приведенный выше список нельзя считать полным.Опыт инженера — важный фактор в поиске неисправностей и устранении неисправностей.

Связанное чтение: Может ли обратный инжиниринг помочь морским инженерам устранять неисправности машинного оборудования на судах

Весь судовой персонал, ответственный за работу клапана дистанционного управления с гидравлическим управлением, должен знать расположение всех клапанов, которыми он управляет. Он / она должен знать, как их открывать / закрывать в случае отказа гидравлической системы.

Отказ от ответственности: Мнения авторов, выраженные в этой статье, не обязательно отражают точку зрения Marine Insight. Данные и диаграммы, если они используются в статье, были получены из доступной информации и не были подтверждены каким-либо установленным законом органом. Автор и компания «Марин Инсайт» не заявляют об их точности и не берут на себя ответственность за них. Взгляды представляют собой только мнения и не представляют собой каких-либо руководящих принципов или рекомендаций относительно какого-либо курса действий, которым должен следовать читатель.

Статья или изображения не могут быть воспроизведены, скопированы, переданы или использованы в любой форме без разрешения автора и Marine Insight.

СохранитьСохранитьСохранитьСохранитьСохранить

Теги: Гидравлическая система дистанционного клапана

Визуальный словарь по насосам

Присоединиться к форуму


Отзыв, не стесняйтесь

Абсолютное давление : давление измеряется в фунтах на квадратный дюйм в британской системе мер и в кПа. (килопаскаль или бар) в метрической системе. Большинство измерений давления производятся относительно к местному атмосферному давлению.В этом случае мы добавляем букву «g» к измеренному давлению. единицы, такие как фунты на кв. дюйм или кПа изб. Значение местного атмосферного давления меняется с высотой. (см. график зависимости давления от высоты на этой странице). Это не то же самое, если вы находитесь на уровне моря (14,7 фунтов на квадратный дюйм) или на Высота 4000 футов (12,7 фунтов / кв. Дюйм). В некоторых случаях необходимо измерить значения давления. которые меньше местного атмосферного давления, и в этих случаях мы используем абсолютную единицу давления, фунтов на квадратный дюйм или кПа абс.

p a (psia) = p r (psig) + p атм (psia), patm = 14,7 psia на уровне моря.

, где p a — абсолютное давление, p r — относительное давление и p атм абсолютное значение давления местного атмосферного давления.

и в метрической системе

p a (кПа абс.) = P r (кПа изб.) + P атм (кПа абс.), Patm = 100 кПа абс. На уровне моря.



Аккумулятор : используется в системах бытового водоснабжения для стабилизировать давление в системе и избегать циклического включения и выключения насоса при каждом нажатии открывается где-то в доме.Гибкий баллон находится под давлением воздуха под давлением желательно для достижения правильной скорости потока в самой дальней точке дома или системы. Как вода вытягивается из резервуара, баллон расширяется, заполняя объем и поддерживая давление. Когда баллон больше не может расширяться, давление воды падает, реле давления насоса включается при низком давлении, и насос запускается и заполняет водяной объем гидроаккумулятора. Мочевой пузырь предотвращает попадание воздуха в раствор с водой, что снижает частоту повторное повышение давления в гидроаккумуляторе.

Насосы часто продаются в комплекте с аккумулятором.


Законы сродства : законы сродства используются для прогнозирования изменения диаметра, необходимого для увеличения расхода или общего напора насоса. Они также могут прогнозировать изменение скорости, необходимое для достижения другого расхода и общего напора. Законы сродства могут применяться только в обстоятельствах, когда система имеет высокий напор трения по сравнению со статическим напором, и это связано с тем, что законы сродства могут применяться только между точками производительности, которые имеют одинаковую эффективность.см. законы сходства.pdf

На следующем рисунке показана система, у которой напор трения (кривая A) выше статического напора, для которого применяются законы сродства, по сравнению с кривой B, система с высоким статическим напором по сравнению с напором трения, где сродство законы не применяются.

Область применения законов сродства для осевого насоса.

Законы сродства выражаются тремя следующими соотношениями, где Q — скорость потока, n — обороты насоса, H — общий напор, P — мощность.Вы можете предсказать условия работы для точки 2, основываясь на знании условий в точке 1 и наоборот.

Процесс получения законов сродства предполагает, что две сравниваемые рабочие точки имеют одинаковую эффективность. Взаимосвязь между двумя рабочими точками, скажем, 1 и 2, зависит от формы кривой системы (см. Следующий рисунок). Все точки, лежащие на системной кривой A, будут иметь примерно одинаковую эффективность.В то время как точки, лежащие на системной кривой B, таковыми не являются. Законы сродства не применяются к точкам, принадлежащим кривой системы B. Кривая системы B описывает систему с относительно высоким статическим напором по сравнению с кривой системы A, которая имеет низкий статический напор.

Уменьшение диаметра Чтобы снизить затраты, корпуса насосов рассчитаны на установку нескольких различных рабочих колес. Кроме того, можно удовлетворить множество эксплуатационных требований, изменив внешний диаметр заданного радиального рабочего колеса.Уравнение Эйлера показывает, что напор должен быть пропорционален (nD) 2 при условии, что треугольники выходных скоростей остаются неизменными до и после резки. Это обычное предположение, которое приводит к:

, которые применяются только к данному рабочему колесу с измененным D и постоянным КПД, но не геометрически подобный ряд рабочих колес. Если это так, то сродство законы могут использоваться для прогнозирования производительности насоса при различных диаметрах для одинаковая скорость или разная скорость для одного и того же диаметра.Поскольку на практике рабочие колеса разные диаметры геометрически не идентичны, автор раздела назвал Параметры производительности в Руководстве по насосу рекомендуют ограничить использование этого метода. к изменению диаметра рабочего колеса не более 10-20%. Чтобы избежать переизбытка обрезки рабочего колеса рекомендуется выполнять поэтапную обрезку с осторожностью измерение результатов. На каждом этапе сравнивайте прогнозируемую производительность с измерить один и при необходимости отрегулировать.

Воздухововлечение (заглатывание) : воздух на всасывании насоса может значительно снизить производительность насоса. Следующая диаграмма от Goulds показывает, что даже 2% воздуха по объему в жидкости могут повлиять на производительность.

Снижение производительности из-за наличия воздуха в насосе

Есть много причин вовлечения воздуха, воздух может поступать во всасывающий резервуар из-за неправильного подключения трубопроводов

или из-за утечки во всасывающей линии насоса (при условии, что условия таковы, что во всасывающей линии создается низкое давление).

Утечка во всасывающей трубе под низким давлением приведет к попаданию воздуха в насос.

Центробежные насосы могут быть сконструированы для обработки большего количества воздуха, если это необходимо. Насосы с вязкостным сопротивлением могут обрабатывать большие количества воздуха.


ДОПУСТИМОЕ НАПРЯЖЕНИЕ ТРУБЫ : допустимое или максимальное напряжение трубы может быть рассчитано с использованием кода ASME Power Piping Code B33.1. Допустимое напряжение трубы фиксируется кодом для данного материала, конструкции и температуры, исходя из чего можно рассчитать допустимое или максимальное давление, разрешенное кодексом.


ANSI : Американский национальный институт стандартов. Термин, часто используемый в связи с классификацией фланцев, ANSI класс 150, 300 и т. Д. См. Этот отрывок из кода ASME B16.5 для определения номинального давления фланцев класса ANSI.


ANSI B73.1 : это стандарт, который применяется к конструкции насосов с односторонним всасыванием. Целью настоящего стандарта является то, что насосы всех источников подачи должны быть взаимозаменяемыми по размерам в отношении монтажных размеров, размера и расположения всасывающих и нагнетательных патрубков, входных валов, опорных плит и фундаментных болтов.

На следующем изображении показаны стандартизованные размеры (источник: Руководство по насосам МакГроу-Хилла)

На следующем изображении показано поперечное сечение насоса с односторонним всасыванием, построенного по стандарту B73.1 (источник: Руководство по насосам McGraw-Hill).

На веб-странице Института МакНалли даются комментарии по поводу стандартов насосов и рекомендуются различные изменения, которые следует применить к насосам перед заказом, а также модификации, которые увеличат срок службы после получения насоса.


Anti Vortex Plate : Антивихревая пластина предотвращает образование вихрей и и, следовательно, вовлечение воздуха в насос, заставляя возникающий вихрь обходить пластину. а затем во всасывающую трубу. Вихревое движение не может поддерживаться, вихрь рассеивается и не может образовываться. если путь слишком длинный и искаженный. Источник: NFPA 22, Стандарт для резервуаров с водой для частной противопожарной защиты. Выпуск 2008 г. . Вы можете найти здесь весь код.


API 610 : Американская нефтяная промышленность, стандарт насосов, принятый в нефтяной промышленности. Цель состоит в том, чтобы сделать насосы более прочными, герметичными и надежными.


ASME : Американское общество инженеров-механиков. Код B31.3 для силовых трубопроводов под давлением котла — это код, который часто используется в сочетании с термином ASME, максимально допустимое давление можно рассчитать с помощью этого кода.

В файле справки этого апплета показаны некоторые выдержки из B31.3 Код ASME.


Атмосферное давление : обычно относится к давлению в окружающей среде насоса. Атмосферное давление меняется с высотой, оно составляет 14,7 фунтов на квадратный дюйм на уровне моря и уменьшается с повышением над уровнем моря. Значение местного атмосферного давления необходимо для расчета NPSHA насоса и предотвращения кавитации.

Взгляните на это видео об интересном эксперименте с атмосферным давлением.

Изменение атмосферного давления с высотой.



Насос с осевым потоком : относится к конструкции центробежного насоса для высокого расхода и низкого напора. Форма крыльчатки похожа на пропеллер. Значение конкретного числа оборотов покажет, подходит ли конструкция насоса с осевым потоком для вашего применения. см. насосы с осевым потоком.

Они широко используются в штате Флорида для контроля уровня воды в каналах низменных сельскохозяйственных угодий. Вода перекачивается через низкие земляные стены, называемые бурмами, в основные водозаборные каналы Южного Флоридского округа по управлению водными ресурсами.



Обратные лопатки : см. Насос с односторонним всасыванием.


Задняя стенка : см. Насос с односторонним всасыванием.


Атмосферное давление : такое же, как атмосферное давление, давление в окружающей среде. Атмосферное давление — это термин, используемый в метеорологии, который часто выражается в дюймах ртутного столба.


Опорная плита : для всех насосов требуется стальная основа, которая удерживает насос и двигатель и крепится к бетонному основанию.

, эти опорные плиты изготовлены в соответствии со стандартом ANSI B73.1 и поэтому подходят для любого насоса, построенного по тому же стандарту.


Точка максимальной эффективности (B.E.P.) : точка на кривой производительности насоса, которая соответствует максимальной эффективности. В этот момент на крыльчатку действует минимальная радиальная сила, обеспечивающая плавную работу с низким уровнем вибрации и шума.

Рисунок 1 Важные точки на характеристической кривой насоса.

Зависимость радиальной силы, действующей на крыльчатку, от расхода (источник: Руководство по насосам МакГравилла).

При выборе центробежного насоса важно, чтобы расчетная рабочая точка находилась в пределах желаемой области выбора, показанной на следующем рисунке.

см. Статьи о максимальной эффективности на этой веб-странице: pumpworld.htm


пластик Бингема : жидкость, которая ведет себя ньютоновским образом (т.е.е. постоянная вязкость), но требует определенного уровня напряжения, чтобы привести его в движение.

Для получения дополнительной информации см. Неньютоновские жидкости.pdf


Манометр Бурдона : трубка Бурдона — это герметичная трубка, которая отклоняется в ответ на приложенное давление и является наиболее распространенным типом механизма измерения давления.


Чаша (вертикальный турбинный насос) : кожух одноступенчатого вертикального турбинного насоса.


байпасной линии: линия используется для подключения выпускной стороне насоса к область низкого давления, часто всасывающий бак насоса, с целью регулирования потока в системе и / или привести рабочую точку насоса в благоприятную область кривой производительности насоса.

Чтобы узнать больше о системах управления, www.driedger.ca представляет собой превосходный обзор типов Системы управления центробежным насосом

.Благодаря Уолтеру Дридгеру из Colt Engineering a консалтинговая инжиниринговая фирма для нефтехимической промышленности в Альберте, Канада.

Программное обеспечение для расчетов : выполнение расчетов насосной системы и насоса выбор может быть длительным ручным процессом с возможностью для многих ошибок. Угощайтесь получать точные, последовательные и безошибочные результаты расчета общего напора с помощью программного обеспечения PIPE-FLO. Это программное обеспечение может разрешить сложные системы с несколькими ответвлениями, управлять регулирующими клапанами и другое оборудование и поможет вам сделать окончательный выбор насоса с помощью электронного оборудования производителя. кривые производительности насоса, предоставляющие настраиваемые функции поиска для получения оптимальный выбор.3 / ч (куб метр в час).


Корпус : Корпус насоса, в котором находится рабочее колесо, син. улитка.


Кавитация : схлопывание пузырьков, которые образуются в ушке крыльчатки из-за низкого давления. Взрыв пузырьков на внутренней стороне лопаток вызывает точечную коррозию и эрозию, которая повреждает рабочее колесо. Конструкция насоса, давление и температура жидкости, поступающей на всасывание насоса, определяют, будет ли жидкость кавитационной.

Рис. 2 Профиль давления внутри центробежного насоса.

, когда жидкость проходит через насос, давление падает, если оно достаточно низкое, жидкость испаряется и образует маленькие пузырьки. Эти пузырьки будут быстро сжиматься давлением, создаваемым быстро движущейся лопастью крыльчатки. Сжатие создает характерный шум кавитации. Наряду с шумом удар лопающихся пузырьков на поверхности лопасти вызывает постепенную эрозию и точечную коррозию, которые повреждают крыльчатку.

Кавитационное повреждение крыльчатки насоса Robot BW5000 (изображение предоставлено моим другом по насосу Бартом Дуйвелааром).

Вы можете присоединиться к дискуссионному форуму по центробежному насосу pumpfundamentals по адресу https://groups.yahoo.com/neo/groups/pumpfundamentals/info


Центробежная сила : сила, связанная с вращающимся телом. В случае насоса вращающееся рабочее колесо толкает жидкость к задней части лопасти рабочего колеса, обеспечивая круговое и радиальное движение.Тело, которое движется по круговой траектории, связано с центробежной силой.

Проведите этот эксперимент: найдите пластиковый стаканчик или другой контейнер, в дне которого можно проделать маленькую дырочку. Наполните его водой и прикрепите к нему шнурок, и теперь, когда вы угадали, начинайте его крутить.

Рис. 3 Эксперимент с центробежной силой.


Чем быстрее вы вращаете, тем больше воды выходит из небольшого отверстия, вы нагнетали воду, содержащуюся в чашке, с помощью центробежной силы, как в насосе.


Характеристическая кривая : такая же, как кривая рабочих характеристик.


Обратный клапан : устройство для предотвращения обратного потока. Насос не должен вращаться в обратном направлении, так как это может привести к повреждению и утечке. Обратные клапаны не используются в некоторых приложениях, где жидкость содержит твердые частицы, такие как суспензии пульпы или шламы, поскольку обратный клапан имеет тенденцию к заклиниванию. Обратный клапан с функцией быстрого закрытия также используется для предотвращения гидравлического удара.см. также коэффициент CV обратного клапана.

Различные обратные клапаны (источник: The Crane Technical Paper № 410)


Уравнение Колебрука : уравнение для расчета коэффициента трения f потока жидкости в трубе для ньютоновских жидкостей любой вязкости. также диаграмму Муди на рис.9. Затем этот коэффициент используется для расчета потерь на трение для прямой длины трубы.

Чтобы понять, как решить уравнение Коулбрука для коэффициента трения f, используя метод итераций Ньютона-Рафсона, загрузите этот файл в формате pdf.

Вот интересная статья об альтернативной явной и очень точной версии уравнения Коулбрука.


Насос измельчителя : насос с зубчатым краем рабочего колеса, который может разрезать крупные твердые частицы и предотвращать засорение.

Насос измельчителя

для получения дополнительной информации см. Specialty_pumps.pdf


Закрытое или открытое рабочее колесо : лопасти рабочего колеса зажаты в кожухе, который поддерживает постоянный контакт жидкости с лопастями рабочего колеса.Этот тип крыльчатки более эффективен, чем крыльчатка открытого типа. Недостатком является то, что каналы для жидкости более узкие и могут забиться, если жидкость содержит примеси или твердые частицы.

В случае открытого рабочего колеса лопатки рабочего колеса открыты, а края не закрыты. сдерживается пеленой. Этот тип крыльчатки менее эффективен, чем крыльчатка закрытого типа. Недостатком является в основном потеря эффективности по сравнению с крыльчаткой закрытого типа. и преимуществом является увеличенный доступный зазор, который поможет устранить любые примеси или твердые частицы проходят через насос и предотвращают засорение.


также прочитал эту статью о закрытых и открытых рабочих колесах Джона Козела, президента компании Sims Pump Valve, перепечатанную с его разрешения. Вы можете просмотреть компанию Sims.



Коэффициент CV : коэффициент, разработанный производителями регулирующих клапанов, который показывает, какой поток может выдержать клапан при падении давления в 1 фунт / кв. Дюйм. Например, регулирующий клапан с CV 500 сможет пропускать 500 галлонов в минуту при падении давления в 1 фунт / кв.Коэффициенты CV иногда используются для других устройств, таких как обратные клапаны.

Коэффициенты CV для обратного клапана вафельного типа.


Cutwater: узкое пространство между рабочим колесом и кожухом в зоне нагнетания кожуха.

— это область, в которой возникают пульсации давления, каждая лопасть, пересекающая водораздел, производит импульс. Чтобы уменьшить пульсации в критическом процессе, добавлено больше лопаток.


Уравнение Дарси-Вайсбаха : уравнение, используемое для расчета потерь напора на трение для жидкостей в трубах, коэффициент трения f должен быть известен и может быть рассчитан с помощью уравнений Коулбрука, Свами-Джейна или диаграммы Муди.


Мертвый напор : ситуация, которая возникает, когда напор насоса закрыт либо из-за засорению линии или непреднамеренно закрытому клапану. В этот момент насос будет работать на максимум. Запорный головы, жидкость будет рециркуляцию внутри насоса, что приводит к перегреву и возможному повреждению.


Диффузор: расположен в зоне нагнетания насоса, диффузор представляет собой набор неподвижных лопаток, часто являющихся неотъемлемой частью корпуса, что снижает турбулентность, способствуя более постепенному снижению скорости.


Мембранный насос : поршневой насос прямого вытеснения. Насосы с двойной диафрагмой обеспечивают плавный поток, надежную работу и способность перекачивать широкий спектр вязких, химически агрессивных, абразивных и нечистых жидкостей.Они используются во многих отраслях промышленности, таких как горнодобывающая, нефтехимическая, целлюлозно-бумажная и др.

Воздушный клапан направляет сжатый воздух в одну из камер, это толкает диафрагму через камеру, и жидкость с другой стороны диафрагмы вытесняется наружу. Диафрагма в противоположной камере притягивается к центру шатуном. Это создает всасывание жидкости в камере, когда тарелка диафрагмы достигает центра насоса, она толкает шток пилотного клапана, направляя импульс воздуха в воздушный клапан.Он перемещается поперек и направляет воздух на противоположную сторону насоса, реверсируя работу. Он также открывает воздушную камеру для выхлопа.

этот тип мембранного насоса приводится в действие пневматическим воздухом, поэтому он может использоваться там, где электрические приводы не являются предпочтительными, является самовсасывающим и может работать всухую в течение коротких периодов времени, работать с опасными жидкостями практически любой вязкости, может перекачивать твердые частицы до определенных размеров .

Wilden — крупный производитель таких насосов https: // www.psgdover.com/en/wilden/


Дилатант : Свойство жидкости, вязкость которой увеличивается с деформацией или перемещением.

Для получения дополнительной информации см. Non-newtoninan fluids.pdf


разряда статического напора : Разница в высоте между уровнем жидкости в резервуаре, если выпускной конец трубы погружен в воду, и осевой линии насоса. Если конец выпускной трубы открыт в атмосферу, это разница между высотой конца трубы и высотой поверхности жидкости всасывающего резервуара.Эта головка также включает в себя любой дополнительный напор, который может присутствовать на поверхности жидкости разгрузочного резервуара, например, как в резервуаре под давлением.

Рисунок 4 Нагнетание, всасывание и общий статический напор.

См. Это руководство для получения дополнительной информации о разрядке статического напора.


Насос двойного всасывания : жидкость направляется внутри корпуса насоса к обеим сторонам рабочего колеса. Это обеспечивает очень стабильные гидравлические характеристики, поскольку гидравлические силы уравновешены.Рабочее колесо находится посередине вала, который поддерживается с каждого конца подшипником. Также N.P.S.H.R. насоса этого типа будет меньше, чем у аналогичного насоса с односторонним всасыванием. Благодаря своей надежности они используются в самых разных отраслях промышленности. Другой важной особенностью является то, что доступ к валу рабочего колеса и подшипникам обеспечивается снятием верхней крышки, при этом все трубопроводы могут оставаться на месте. Этот тип насоса обычно имеет двойную спиральную камеру.

Следующее изображение предоставлено Flow Serve Corporation.

Этот эскиз поможет визуализировать поток внутри насоса.


Насос с двойной спиральной камерой : насос, в котором непосредственная спиральная часть рабочего колеса отделена перегородкой от основного корпуса корпуса. Такая конструкция снижает радиальную нагрузку на рабочее колесо, делая работу насоса более плавной и безвибрационной.

Насос с двойной улиткой (источник изображения — Руководство по насосам МакГроу-Хилла).

см. Дополнительную информацию в базе данных типов насосов

Для получения дополнительной информации см. Этот pdf-файл от Cornell Pumps


поникнувших кривые : по аналогии с нормальным профилем за исключением конца низкого потока, где голова поднимается, то падает, как он попадет в запорном голове точку. см. centrifugal-pump-tips.htm


КПД: : КПД насоса можно определить путем измерения крутящего момента на валу насоса с крутящим моментом счетчик, а затем рассчитывает эффективность на основе скорости насоса, давления или общего напора. и расход, создаваемый насосом.Стандартное уравнение крутящего момента и скорости дает мощность.

Мощность, потребляемая насосом, пропорциональна общему напору, расходу, удельному весу и эффективности.

для метрической версии этой формулы см. На этой странице.

Измеряется расход и общий напор, а затем определяется эффективность.

КПД рассчитывается для различных значений расхода и отображается на той же кривой, что и насос. производительность или характеристическая кривая. Когда построено несколько кривых производительности, одинаковая эффективность ценности связаны, чтобы обеспечить линии равной эффективности.Это полезный наглядный помощник, поскольку он указывает области различных кривых насоса, которые имеют высокий КПД, которые будут предпочтительными областями или области, в которых должен работать выбранный насос. Наивысший КПД для данной характеристики насоса составляет известный как B.E.P. (точка максимальной эффективности), больше информации доступно в этой области визуального глоссарий.

Центробежные насосы бывают разных конструкций, некоторые из них больше подходят для работы с низким расходом и высоким напором. и другие для высокого расхода с низким напором и некоторые промежуточные.Они созданы для достижения максимальной эффективность для конкретного приложения.

Конкретное число скорости указывает, какой тип насоса больше подходит для вашего применения. Влияние конкретной скорости на конструкцию насоса и способ вычисления этого числа: доступно в этой области визуального глоссария.

Эффективность можно спрогнозировать. Несколько лет назад был проведен обзор типовых промышленных насосов. Средняя эффективность была нанесена на график в зависимости от конкретной скорости, и она показывает, какова максимальная эффективность пределы указаны для насосов в различных условиях эксплуатации.Более подробная информация доступна на страница советов по центробежным насосам.

Удельная скорость всасывания — еще один параметр, который может повлиять на эффективность. Это число является мерой сколько потока можно пропустить через насос, прежде чем он начнет дросселировать (достигнет верхнего предела потока) и кавитирует (давление на всасывании становится достаточно низким, чтобы жидкость испарялась). Более информация доступна в визуальном глоссарии здесь.


Насос с односторонним всасыванием : типичный центробежный насос, рабочая лошадка промышленности.Также известен как спиральный насос, стандартный насос, горизонтальный всасывающий насос. Конструкция с обратным извлечением является стандартной функцией и позволяет легко снимать рабочее колесо и вал вместе с приводом и подшипником в сборе, сохраняя при этом трубопровод и двигатель на месте.

Некоторые из его компонентов:

1. Корпус, улитка

2. Рабочее колесо, лопатки, наконечники лопастей, задняя пластина, передняя пластина (кожух), задние лопатки, каналы для выравнивания давления или балансировочные отверстия

3.Задняя крышка параллельно плоскости всасывания крыльчатки

4. Сальниковая коробка — корпус сальника / механического уплотнения или набивка / фонарное кольцо

5. Вал насоса

6. Корпус насоса

7. Корпус подшипника

8. Подшипники

9. Уплотнения подшипников

11. Вытяжка назад

12. Подшипники

13. Уплотнения подшипников

Балансировочные отверстия

Задние лопасти

Эквивалентная длина : метод, используемый для определения потерь на трение в фитингах (см. Следующий рисунок).Эквивалентную длину фитинга можно найти с помощью номограммы ниже. Эквивалентная длина затем добавляется к длине трубы, и с этой новой длиной трубы рассчитываются общие потери на трение в трубе. Сегодня этот метод используется редко. Текущий метод расчета потери напора на трение в фитингах см. На сайте tutotial3.htm.


Градиент энергии : см. Гидравлический градиент.


Экспеллер : гидродинамическое уплотнение, которое обеспечивает уплотнение без добавления воды в сальник, особенно полезно для жидких шламов.


(источник изображения: статья Worthington Pumpworld, см. Ниже)

см. Статью о уплотнении экспеллера на этой веб-странице: pumpworld.htm


Внешний Шестеренчатый насос : поршневой насос прямого вытеснения. Две прямозубые цилиндрические шестерни размещены в одном корпусе с небольшим зазором. Жидкость задерживается между полостями зубьев шестерни и корпусом, вращение шестерен перекачивает жидкость. Они также используются для промышленной перекачки под высоким давлением и измерения чистых, отфильтрованных смазочных жидкостей.

Viking Pumps является основным поставщиком этих насосов


Плоская кривая : напор очень медленно уменьшается по мере увеличения потока, см. Centrifugal-pump-tips.htm


Разделитель потока : см. Разделитель потока на всасывании.


Приемный клапан : обратный клапан, который устанавливается на конце всасывающей трубы насоса, часто вместе со встроенным сетчатым фильтром.


Форум : pumpfundamentals Форум — это место, где вы можете задать вопросы о центробежных насосах и др. типы, а также поделиться своими знаниями с другими.Ценный ресурс. Присоединиться здесь.


Потери на трение (насос) : на следующей диаграмме показано распределение потерь на трение и их относительный размер, возникающих в насосе.

Источник: Центробежные и осевые насосы A.J. Степанов, опубликованный John Wiley and Sons 1957.


Трение (труба) : Сила, возникающая как реакция на движение. Все жидкости при движении подвержены трению. Чем выше вязкость жидкости, тем выше сила трения при той же скорости потока.Трение возникает внутри, когда один слой жидкости движется относительно другого, а также на границе раздела стенок жидкости. Шероховатые трубы также вызывают сильное трение.


Потери напора на трение (труба) : потеря напора на трение дается уравнением Дарси-Вайсбаха и во многих таблицах, например, в справочнике Cameron Hydraulic. Обычно он выражается в футах жидкости на 100 футов трубы.

Таблица коэффициентов потери напора для воды из справочника Cameron Hydraulic.

Для получения дополнительной информации о фрикционной головке.


Коэффициент трения f (труба) : коэффициент трения f требуется для расчета потери напора на трение. Он задается диаграммой Муди, уравнением Коулбрука или уравнением Свами-Джайна. Значение коэффициента трения будет зависеть от того, является ли поток жидкости ламинарным или турбулентным. Эти режимы течения можно определить по значению числа Рейнольдса.


Передняя крышка : см. Насос с односторонним всасыванием.


Передняя панель : см. Насос с односторонним всасыванием.


Сальник : см. Сальник.


Насосы с мокрым ротором : см. Насосы без уплотнения.


Уравнение Хазена-Вильямса : в настоящее время это уравнение используется редко, но широко использовалось в прошлое и дает хорошие результаты, хотя имеет много ограничений, одно из которых состоит в том, что он не учитывает вязкость. Поэтому его можно применять только к жидкостям с вязкостью, аналогичной вязкости воды при 60F.Он был заменен на Дарси-Вайсбах и уравнение Коулбрука. Интересно, что NFPA (Национальная ассоциация противопожарной защиты) требует чтобы уравнение Хазена-Вильямса использовалось, например, для расчета трения в спринклерных системах.

Коэффициенты C, используемые в приведенном выше уравнении Хазена-Вильямса, приведены в таблице ниже.
Источником этого уравнения является книга Cameron Hydraulic Data book.

Коэффициенты уравнения Хазена-Вильямса C.


Напор: высота, на которую насос может перемещать жидкость. Голова — это тоже форма энергии. В насосных системах существует 4 различных типа напора: вертикальный или статический, напор, скоростной напор и потеря напора на трение. Для получения дополнительной информации о голове см. Этот учебник.

Единица измерения напора, также известная как удельная энергия или энергия на единицу веса жидкости, выражается в футах или метрах. см. также учебник2

Попробуйте это веб-приложение, чтобы измерить напор.


Гидравлический градиент: Все параметры энергии системы (например, скоростной напор, трубопроводы и потери на трение в фитингах) преобразуются в напор и отображаются в виде графика над вертикальным чертежом установки. Это помогает визуализировать, где расположены все энергетические термины, и убедиться, что ничего не упущено.


Рабочее колесо: Вращающийся элемент насоса, который состоит из диска с изогнутыми лопатками. Рабочее колесо сообщает жидкости движение и давление.

См. Этот документ Института МакНалли

о рабочих колесах.

Рис. 5 Основные части насоса и терминология.

Рабочее колесо состоит из задней пластины, лопаток, а для закрытых рабочих колес — передней пластины или кожуха. Он может быть оборудован компенсационными кольцами, обратными лопатками и балансировочными отверстиями.

, подробнее о различных типах крыльчатки см. Impeller.htm.


Проушина рабочего колеса: та область центробежного насоса, которая направляет жидкость в область лопастей рабочего колеса.Диаметр проушины определяет, сколько жидкости может попасть в насос при заданной скорости потока, не вызывая чрезмерного падения давления и кавитации. Скорость внутри глаза будет контролировать NPSHR, см. Эту диаграмму.

см. Также centrifugal-pump-tips.htm

Для получения дополнительной информации о терминологии деталей насоса см. Эту веб-страницу.


Индуктор: Индуктор — это устройство, прикрепленное к проушине рабочего колеса, которое обычно имеет форму винта, которое помогает увеличить давление на входе в лопасть рабочего колеса и делает перекачиваемыми вязкие жидкости или жидкости с высоким содержанием твердых частиц.Его также можно использовать для уменьшения NPSHR.

(источник изображения: Teikoku).

см. Статьи о индукторах на этой странице: pumpworld.htm


Насос с внутренним зацеплением : поршневой насос прямого вытеснения.

Принцип перекачки с внутренним зацеплением был изобретен Йенсом Нильсеном, одним из основателей компании Viking Pump. В нем используются две вращающиеся шестерни, которые разъединяются на всасывающей стороне насоса, чтобы создать пустоты, которые позволяют атмосферному давлению нагнетать жидкость в насос.Промежутки между зубьями шестерни транспортируют жидкость по обе стороны от серпа к стороне нагнетания, а затем шестерни повторно входят в зацепление для выпуска жидкости. Внутренняя шестерня Viking имеет внешнюю ведущую шестерню (ротор показан оранжевым цветом), которая вращает внутреннюю ведомую шестерню (холостой ход показан белым).

Viking Pumps является основным поставщиком этих насосов.


Струйный насос : струйный насос — это широко распространенный насос для бытового водоснабжения.Он имеет интересную продуманную конструкцию, которая может поднимать воду из колодца (до 25 футов) и позволяет ему работать без обратного клапана на всасывании и, кроме того, не требует заливки. Сердцем конструкции является трубка Вентури (источник воды — со стороны нагнетания крыльчатки), которая создает низкое давление, создавая вакуум на всасывании и позволяя насосу поднимать жидкости.


Коэффициент K : коэффициент, который обеспечивает потерю напора для фитингов.Он используется со следующим уравнением

Коэффициент К для различных фитингов можно найти во многих публикациях. В качестве примера на рис. 6 показано соотношение между коэффициентом К для отвода с резьбой на 90 ° и диаметром (D). Тип фитинга определяет соотношение между потерями на трение и размером трубы.

Примечание: этот метод предполагает, что поток является полностью турбулентным (см. Демаркационную линию на диаграмме Муди на Рисунке 9).

Рисунок 6 Коэффициент K vs.диаметр фитинга (источник: Инженерный журнал Гидравлического института)

Еще один хороший источник для подбора K-факторов — это брошюра с техническими данными крана.

Рис. 7 Значения коэффициента K по отношению к коэффициенту трения для стандартного тройника.

Технический документ Crane дает значение K для фитинга в терминах f T , как в этом примере для стандартного тройника.


Как и в случае данных, показанных на рисунке 6, потери на трение для фитингов основаны на предположении, что поток очень турбулентный, фактически, он настолько турбулентный, что число Рейнольдса больше не является фактором, а шероховатость трубы основной параметр, влияющий на трение.Это можно увидеть на диаграмме Муди. На схеме есть линия, указывающая место начала полной турбулентности.

Термин f T , используемый Крейном, является коэффициентом трения и аналогичен тому, который дается уравнениями Коулбрука или Свами-Джайна.


Когда число Рейнольдса становится большим, значение f T (с использованием уравнения Свами-Джайна) становится:


, а также Технический документ по кранам №410

предполагает, что шероховатость материала будет соответствовать новой стали, значение которой составляет 0,00015 футов. Следовательно, предыдущее уравнение для f T принимает следующий вид:


Таким образом, значение коэффициента К легко рассчитывается на основе диаметра фитинга, коэффициента трения f T и коэффициента умножения для каждого типа фитинга.


Ламинар : отчетливый режим потока, который возникает при низком числе Рейнольдса (Re <2000).Он характеризуется слоями жидких частиц, движущихся друг мимо друга без перемешивания.


Рис. 8 Профиль скорости ламинарного потока.


Кулачковый насос : поршневой насос прямого вытеснения. В основном используются в пищевых продуктах, поскольку они обрабатывают твердые частицы, не повреждая их. Лепестки приводятся в движение внешними синхронизирующими шестернями, поэтому лопасти не контактируют. Жидкость перемещается по внутренней части корпуса в карманах между выступами и корпусом, зацепление выступов заставляет жидкость проходить через выпускное отверстие под давлением.Они также предлагают непрерывные и прерывистые обратимые потоки и могут работать всухую в течение коротких периодов времени. Типичное применение — в следующих отраслях: пищевая, фармацевтическая, целлюлозно-бумажная, безалкогольная, химическая и биотехнологическая.

Viking Pumps является основным поставщиком этих насосов https://www.vikingpump.com/.


Насос с низким NPSH : насос, предназначенный для работы с низким NPSH. в наличии, обычно есть индуктор.см. индуктор

для получения дополнительной информации см. Specialty_pumps.pdf


Торцевое уплотнение : название соединения, которое изолирует жидкость в насосе, предотвращая ее выход в стыке между корпусом и валом насоса. На следующем изображении (источник: Руководство по насосам от McGraw-Hill) показано типичное механическое уплотнение. Торцевое уплотнение — это уплотнительное устройство, которое образует подвижное уплотнение между вращающимися и неподвижными частями. Они были разработаны для преодоления недостатков компрессионного уплотнения.Утечка может быть снижена до уровня, соответствующего экологическим стандартам государственных регулирующих органов, а затраты на техническое обслуживание могут быть ниже.


Ртуть (Hg) : металл, который остается жидким при комнатной температуре. Это свойство делает его полезным при использовании в тонкой вертикальной стеклянной трубке, поскольку небольшие изменения давления можно измерить как изменения высоты столбика ртути. Дюйм ртутного столба часто используется как единица измерения уровня вакуума или давления ниже атмосферного.

Соотношение между единицами измерения давления в дюймах ртутного столба, фунтах на квадратный дюйм и фунтах на квадратный дюйм.


Минимальный расход

Большинство центробежных насосов не должны использоваться при расходе менее 50% от B.E.P. (точка максимальной эффективности) расход без рециркуляционной линии. (Что такое B.E.P.?) Если для вашей системы требуется расход 50% или меньше, используйте линию рециркуляции, чтобы увеличить поток через насос, сохраняя низкий поток в системе, или установите привод с регулируемой скоростью.

см. Также глоссарий по насосам BEP

Как устанавливается минимальный расход центробежного насоса (ответ Гидравлического института)

Факторы, определяющие минимально допустимую скорость потока, включают следующее:

* Повышение температуры жидкости — обычно устанавливается как 15 ° F и приводит к очень низкому пределу. Однако, если насос работает при отключении, он может сильно перегреться.

* Радиальная гидравлическая нагрузка на рабочие колеса — это наиболее серьезная проблема для насосов с одной спиральной камерой, и даже при расходе до 50% от BEP может вызвать сокращение срока службы подшипников, чрезмерный прогиб вала, выход из строя уплотнений, трение рабочего колеса и поломку вала.

* Рециркуляция потока в крыльчатке насоса — это также может происходить ниже 50% BEP, вызывая шум, вибрацию, кавитацию и механические повреждения.

* Характеристическая кривая общего напора — некоторые кривые насоса наклоняются в сторону отключения, а некоторые кривые VTP показывают наклон кривой. Следует избегать эксплуатации в таких регионах.

Не существует стандарта, который устанавливает точные пределы для минимального расхода в насосах, но в документе «Центробежные и вертикальные насосы ANSI / HI 9.6.3-1997 — допустимая рабочая область» обсуждаются все факторы и даются рекомендации для «предпочтительного рабочего региона». .


Минимальный NPSHA : запас прочности или минимальный NPSHA, который должен быть доступен, частично зависит от количества энергии всасывания насоса. Уровень энергии всасывания насоса увеличивается на:

  • Диаметр всасывания корпуса
  • Скорость насоса
  • Удельная скорость всасывания
  • Удельный вес жидкости

Все, что увеличивает скорость проушины рабочего колеса насоса, скорость потока насоса или удельный гравитация, увеличивает энергию всасывания насоса.

Гидравлический институт предложил эти рекомендации для минимального NPSHA в зависимости от уровня энергии всасывания.

Рекомендации по минимальному коэффициенту маржи NPSH NPSHA / NPSHR

Уровни энергии всасывания

Заявка Низкий Средний Высокая
Нефть 1.1-а 1,3-а
Химическая промышленность 1,1-а 1,3-а
Электроэнергия 1,1-а 1,5-а 2,0-а
Атомная энергетика 1,5-б 2.-а 2,5-а
Градирни 1,3-б 1,5-а 2.0-a
Вода / сточные воды 1,1-а 1,3-а 2,0-а
Общая промышленность 1,1-а 1,2-а
Целлюлоза и бумага 1,1-а 1,3-а
Строительные услуги 1,1-а 1,3-а
Жидкий раствор 1.1-а
Трубопровод 1,3-а 1,7-а 2,0-а
Вода / еда 1,2-а 1,5-а 2,0-а

«a» — или 0,6 м (2 фута) в зависимости от того, что больше

«b» — или 0,9 м (3 фута) в зависимости от того, что больше

«a» — или 1,5 м (5 футов) в зависимости от того, что больше

см. Статьи о рекомендациях по NPSH на этой веб-странице: pumpworld.htm


Рама двигателя : NEMA (Национальная ассоциация производителей электрооборудования) устанавливает стандарты, в соответствии с которыми построены электрические асинхронные двигатели. Каждый размер рамы (например, рама 254T) соответствует определенным размерам. Объем места, необходимого для сборки насоса, будет зависеть от размера и конструкции двигателя. Нетрудно найти диаграмму, в которой указаны размеры двигателя в зависимости от размера корпуса (см. Следующую таблицу).

, но я смотрел долго и трудно найти схему, которая обеспечивает VS. размер кадраобороты и л.с., и вот она:


Диаграмма Муди : графическое представление уравнений ламинарного и турбулентного (Коулбрука) течения.

Рисунок 9 — диаграмма Муди, графическое представление уравнения ламинарного потока и уравнения Коулбрука для коэффициента трения f.


Имеется положительная высота всасывания, нетто (N.P.S.H.A.) : Доступна положительная высота всасывания. Напор или удельная энергия на всасывающем фланце насоса минус напор пара жидкости.см. NPSHA.PDF

См. Этот калькулятор веб-приложения для N.PS.H.A.

Также для тех, кому нужно знать о НПША, но ненавидит это скучное слово.


Требуется чистый положительный напор на всасывании (N.P.S.H.R.) : Требуется положительный чистый напор на всасывании. Производители оценивают NPSH, необходимый для насоса при определенном расходе, общем напоре, скорости и диаметре рабочего колеса. Это определено моим измерением. см. также NPSHR.PDF

На следующем рисунке представлена ​​оценка NPSHR для центробежных насосов (источник: Centrifugal Pump Design & Application by Val.С.Лабанофф и Роберт Р. Росс, предоставленные другом с форума по насосам Рави Санкаром.

Вы можете присоединиться к дискуссионному форуму центробежного насоса по адресу https://groups.yahoo.com/neo/groups/pumpfundamentals/info

Для получения изображения большего размера загрузите npshr-predic.pdf


Ньютоновская жидкость : жидкость, вязкость которой постоянна и не зависит от скорости сдвига (деформации). Для ньютоновских жидкостей существует линейная зависимость между скоростью сдвига и касательным напряжением между слоями.

Для получения дополнительной информации см. Non-newtoninan fluids.pdf

Рис. 10 Отношение сдвига / деформации для ньютоновской жидкости.

Если вы хотите понять, на что похожа неньютоновская жидкость и что означает изменение вязкости со скоростью сдвига, попробуйте этот эксперимент.

В большой неглубокой миске приготовьте раствор из примерно 1 части воды и 2 частей кукурузного крахмала, попробуйте быстро перемещать эту жидкость пальцами.Когда пальцы двигаются медленно, раствор ведет себя так, как ожидалось, не оказывая сопротивления. Чем быстрее вы пытаетесь двигаться через жидкость, тем выше сопротивление. При такой скорости сдвига раствор ведет себя почти как твердое тело. Если вы двигаете пальцами достаточно быстро, они будут скользить по поверхности. Вот что подразумевается под вязкостью, зависящей от скорости сдвига. Сравните это поведение с поведением патоки; вы обнаружите, что даже несмотря на то, что патока вязкая, ее вязкость очень мало изменяется со скоростью сдвига.Меласса течет легко, независимо от скорости движения.

Посмотрите видео-презентацию этого эксперимента.


Рабочая точка : точка (расход и общий напор), в которой работает насос. Он расположен на пересечении кривой системы и кривой производительности насоса. Он соответствует расходу и напору, необходимым для процесса.

Рис. 11 Рабочая точка на кривой производительности насоса.


Сальник : см. Сальник.


Насос частичного выброса : см. Радиально-пластинчатый насос.


Периферийный (регенеративный) насос : также известен как регенеративный или регенеративный турбинный насос. Это насосы малой производительности (150 галлонов в минуту или 34 м3 / ч) с высоким напором (5400 футов или 1645 м). Рабочее колесо имеет короткие лопатки на периферии, которые проходят через кольцевой канал. Жидкость входит между двумя лопастями рабочего колеса и приводится в круговое движение, это добавляет энергии частицам жидкости, которые движутся по спиралевидному пути от входа к выходу.Каждый набор лопаток непрерывно добавляет энергию частицам жидкости.

Периферийные насосы более эффективны в условиях низкого расхода и высокого напора, чем центробежные насосы, они также требуют гораздо меньше NPSHA, чем эквивалентный центробежный насос. Они также могут обрабатывать жидкости с содержанием до 20% увлеченные газы. Их можно запускать в ОБРАТНОМ РЕЖИМЕ, что иногда может быть интересной способностью в определенных случаях.

Они используются в широком спектре бытовых и промышленных применений.

Подробное объяснение принципа работы см. На этой странице веб-сайта Mepco.
, а также от Roth Pump Co.



Кривая производительности : График зависимости общего напора от расхода для конкретной модели насоса, диаметра рабочего колеса и скорости (синх. Характеристическая кривая, кривая производительности по воде). см. рисунок 1

Для получения дополнительной информации о производительности или характеристической кривой см. Этот учебник


Шероховатость трубы : Измерение средней высоты выступов, создающих шероховатость на внутренней поверхности труб.Шероховатость измеряется во многих местах, а затем усредняется, обычно она определяется в микродюймах RMS (среднеквадратичное значение). Скачать или просмотреть карту шероховатости трубы в формате pdf


Давление в трубопроводе (максимальное) : в некоторых случаях может потребоваться проверка максимального номинального значения ваших труб, чтобы избежать разрыва из-за чрезмерного давления. Код ASME для напорных трубопроводов B31.3 обеспечивает максимальное напряжение для труб из различных материалов. Также необходимо проверить номинал фланца трубы.

для получения дополнительной информации см. Max_piping_oper_press.pdf

Таблица допустимых напряжений трубопровода из кода ASME для трубопроводов высокого давления B31.3


Насос Пито : также известен как насос с вращающимся корпусом. Этот насос специализируется на расходах от низких до средних при высоком давлении. Он часто используется для подачи душа под высоким давлением на бумагоделательных машинах.

Насос Пито (роторно-струйный)

см. Дополнительную информацию в базе данных типов насосов


Давление : Приложение силы к телу, вызывающее большее или меньшее сжатие внутри жидкости.В статической жидкости давление меняется с высотой.

Вес жидкости является причиной гидростатического давления. Тонкий слой жидкости изолирован, чтобы можно было визуализировать окружающие его силы. Если сделать ломтик очень тонким, давление сверху и снизу будет одинаковым. Срез сжимается сверху и снизу векторами силы, противоположными друг другу. Жидкость в срезе также оказывает давление в горизонтальном направлении на стенки трубы. Эти силы уравновешиваются напряжением в стенке трубы.Давление внизу среза будет равно весу жидкости над ним, деленному на площадь.

Вес столба жидкости высотой (z) составляет:

Давление (p) равно весу жидкости (F), деленному на площадь поперечного сечения (A) в точке, где рассчитывается давление:

где F: сила от веса жидкости

В: объем

g: ускорение свободного падения (32.17 фут / с 2 )

: плотность жидкости в фунтах массы на единицу объема

: плотность жидкости или удельный вес в фунтах силы на единицу объема


Напор : выражение энергии, в частности, энергия на единицу веса вытесненной жидкости. Более подробная информация о напорных.

Нам часто требуется рассчитать напор, соответствующий давлению. Давление может быть преобразовано в напор или высоту столба жидкости для любой жидкости.Однако не все жидкости имеют одинаковую плотность. Например, вода имеет плотность 62,34 фунта на кубический фут, тогда как плотность бензина составляет 46,75 фунта на кубический фут. Удельный вес — это отношение плотности жидкости к плотности воды при стандартных условиях. По определению вода имеет удельный вес (SG) 1. Чтобы преобразовать давление в напор, необходимо знать удельный вес SG жидкости. Удельный вес жидкости:


где — плотность жидкости, а — плотность воды при стандартных условиях.С

где — плотность жидкости в единицах веса. Постоянная gc требуется для обеспечения связи между массой в фунтах-силах и силой в фунтах-силах.

Количество (= 62,34 фунта / фут 3 для воды при 60 ° F) составляет:

После упрощения соотношение между высотой столба жидкости и давлением в нижней части столбца составляет:


Винтовой насос : поршневой насос.Эти насосы идеально подходят для жидкостей, с которыми не справляются другие насосы. например — пасты, смазки, шламы и т. Д. Они состоят только из одного ведомого металлического ротора, вращающегося внутри статора с эластомерным покрытием (эластичного).

Жидкость поступает во впускное отверстие всасывания под давлением или под действием силы тяжести и по мере того, как РОТОР 1 вращается внутри гибкого резинового СТАТОРА 2, образуя герметичные полости 3, которые перемещают жидкость к выпускному отверстию. Насосное действие начинается в момент поворота РОТОРА.Жидкость действует как смазка между насосными элементами.


Псевдопластический : Свойство жидкости, вязкость которой медленно увеличивается со скоростью сдвига.

Для получения дополнительной информации см. Non-newtoninan fluids.pdf


Насосы в качестве турбин (PAT) : Насосы, используемые в качестве турбин.

Для получения дополнительной информации см. Насосы как турбины


Радиальный насос : относится к конструкции центробежного насоса для среднего напора и среднего расхода или высокого напора и низкого расхода.Значение конкретного числа оборотов покажет, подходит ли радиальная конструкция насоса для вашего применения. см. насосы с радиальным потоком.


Радиально-пластинчатый насос : также известен как насос частичного выброса или пластинчатый насос. Установленный на раме, торцевое всасывание, нагнетание по центральной линии, насос ANSI, разработанный специально для работы с агрессивными химикатами при малых расходах.

Пластинчатый насос

см. Дополнительную информацию в базе данных типов насосов


Насос с утопленным рабочим колесом : иногда называют вихревым насосом.Это установленный на раме, выдвижной насос с торцевым всасыванием, утопленным рабочим колесом и тангенциальным нагнетателем, разработанный специально для работы с некоторыми объемными или волокнистыми твердыми телами, жидкостями с воздухом или газом или жидкостями, чувствительными к сдвигу.

Насос с утопленным рабочим колесом

см. Дополнительную информацию в базе данных типов насосов

см. Также эту статью от компании Lawrence Pump.


Рециркуляция : при низком и высоком расходе по сравнению с расходом на B.E.P. жидкость начнет рециркулировать или двигаться в обратном направлении на всасывании и нагнетании.

Хорошо известно, что повреждения кавитационного типа, наблюдаемые на входных лопатках и не связанные с недостаточным NPSH, могут быть напрямую связаны с насосом, работающим в зоне рециркуляции на всасывании. Подобные повреждения, наблюдаемые на концах нагнетательных лопаток, также могут быть связаны с работой насоса в зоне рециркуляции нагнетания.

Рециркуляция всасывания и нагнетания может происходить в разных точках, как показано на характеристической кривой ниже.


Регенеративный насос : см. Периферийный насос, также известный как регенеративный турбинный насос.


Число Рейнольдса : число Рейнольдса пропорционально соотношению скорости и вязкости, чем выше число (более 4000 для турбулентного потока), тем более турбулентный поток и меньшая вязкость оказывает влияние. При высоких числах Рейнольдса (см. Линию перехода к полной турбулентности на диаграмме Муди) шероховатость трубы становится определяющим фактором потерь на трение.Чем ниже число Рейнольдса (менее 2000 для ламинарного потока), тем более актуальной является вязкость жидкости. Большинство применений находятся в режиме турбулентного потока, если только жидкость не очень вязкая (например, 300 сСт и выше), скорость должна быть очень низкой для создания режима ламинарного потока.


Rheopectic : Свойство жидкости, вязкость которой увеличивается со временем.

Для получения дополнительной информации см. Неньютоновские жидкости.pdf


Резиновая гильза насоса : см. Шламовый насос.


Винтовое рабочее колесо : Винтовое центробежное рабочее колесо имеет форму конического винта Архимеда. Первоначально разработанный для перекачивания живой рыбы, винтовой центробежный насос
стал популярным для многих приложений, связанных с перемещением твердых частиц.

для получения дополнительной информации см. Этот информационный бюллетень от Lawrence Pump.
см. Также эту статью насосной компании Hayward Gordon.


Насос без уплотнения : дополнительную информацию, изображения и ссылки на насосы без уплотнения см. В таблице типов насосов.


Самовсасывающий насос : насос, не требующий заливки или первоначального заполнения жидкостью. Корпус насоса имеет запас воды, который помогает создать вакуум, который поднимет жидкость из низкого источника.

Самовсасывающий насос


для получения дополнительной информации см. Specialty_pumps.pdf


Кожух : см. Насос с односторонним всасыванием.


Запорный напор : Общий напор, соответствующий нулевому расходу на кривой производительности насоса.

Рис. 12 Запорный напор и другие точки на кривой производительности центробежного насоса.

Запорный напор — это общий напор, который насос может подавать при нулевом расходе (см. Следующий рисунок). Запорная головка важна по 2 причинам.

1. В некоторых системах (что, по общему признанию, необычно), нагнетательная линия насоса может проходить на гораздо большей высоте, чем конечная точка нагнетания.Жидкость сначала должна достичь более высокого уровня в системе. Если запорный напор меньше статического напора, соответствующего верхней точке, то поток в системе не установится.

2. Во время запуска и проверки насоса быстрый способ определить, обладает ли насос потенциальной мощностью для обеспечения необходимого напора и расхода, — это измерить запорный напор. Это значение можно сравнить с запорным напором, рассчитанным по кривой производительности насоса.


Насос с боковым каналом : это насос, обеспечивающий высокий напор при низкие потоки с дополнительным преимуществом, заключающимся в возможности работать с газами.Принцип работы помпы хорошо объяснено на веб-сайте Sero Pump

Веб-сайт. Я включил версию Интернета в формате pdf материалы сайта (как есть) на случай, если однажды веб-страница Sero изменится или исчезнет, я благодарен Серо за то, что сделал это доступным. Принцип побочного канала аналогичен к регенеративному (периферийному) насосу.

В базе данных насосов вы найдете другие примеры и поставщиков насосов с боковым каналом. с использованием типа насоса: боковой канал.


Сифон : Система трубопроводов или трубок, где точка выхода ниже точки входа и где некоторая часть трубопровода находится выше свободной поверхности источника жидкости.

Рисунок 14 Сифон.

См. В этой статье описание того, как работает сифон.


Шламовый насос : некоторые виды шлама имеют тенденцию к очень сильному оседанию. быстро и их трудно удержать в подвешенном состоянии. Насосная компания Lawrence решила эту проблему. проблема, поставив мешалку перед всасывающим устройством насоса.

Шламовый насос

для получения дополнительной информации см. Specialty_pumps.pdf


Шламовый насос : прочный насос для тяжелых условий эксплуатации, предназначенный для агрессивных или абразивных шламов, которые обычно используются в горнодобывающей промышленности с частицами различных размеров. Это достигается за счет футеровки внутренней части корпуса насоса, а также рабочего колеса резиной.

Шламовый насос

см. Подробный чертеж для получения дополнительной информации

см. Специальные_насосы.pdf для получения дополнительной информации

, а также Руководство Warman Slurry Pumping Handbook


Удельный вес (SG) : отношение плотности жидкости к плотности воды при стандартных условиях. Если удельный вес равен 1, то плотность такая же, как у воды, если меньше 1, то жидкость менее плотна, чем вода, и тяжелее воды, если удельный вес больше 1. Удельный вес ртути равен 14, у бензина — удельный вес. SG 0,8. Полезность удельного веса заключается в том, что он не имеет единиц измерения, поскольку он является сравнительной мерой плотности или соотношением плотностей, поэтому удельный вес будет иметь одинаковое значение независимо от того, какую систему единиц измерения мы используем, имперскую или метрическую.

Для получения дополнительной информации см. Удельный вес.pdf

Посмотрите этот эксперимент на видео, показывающем, что общий напор не зависит от плотности или удельного веса.

приведенное выше изображение взято из сборника данных Cameron Hydraulic, который содержит большой объем информации о свойствах жидкости.


Удельная скорость : число, указывающее тип насоса (например, радиальный, смешанный поток или осевой) подходит для применения.Рисунок ниже известен как диаграмма Balje .

Удельная скорость рассчитывается по формуле:


Преобразование удельной скорости из метрических в британские N Sm приведено ниже:


см. Также удельную скорость всасывания

статью по этой теме см. Specific-speed_primer.pdf

, а вот калькулятор для конкретной скорости в веб-приложении.


Стандартный моноблочный насос со спиральной камерой : Спиральная часть — это корпус, имеющий спиральную форму.В Вал двигателя соединен с рабочим колесом без промежуточной муфты, что обеспечивает компактное расположение. Диапазон расхода обычно составляет менее 300 галлонов в минуту.

Изображение этого насоса любезно предоставлено Ace Pumps.


Стандартный насос со спиральной камерой, подсоединяемый отдельно : Спиральная часть — это корпус, имеющий спиралевидную форму. В Вал двигателя соединен с рабочим колесом промежуточным валом с двумя муфтами.

Изображение этого насоса любезно предоставлено Allweiler.


Деформация : отношение абсолютного смещения контрольной точки внутри тела к характерной длине тела. см. рисунок 10.


Напряжение : В данном случае относится к касательному напряжению или силе между слоями жидкости, разделенной на площадь поверхности между ними.


Сальник : соединение, которое изолирует жидкость в насосе, предотвращая ее выход между корпусом и валом насоса.На следующем изображении (источник: Справочник по насосам от McGraw-Hill) показан типичный сальник с сальником. Функция набивки — контролировать утечку, а не устранять ее полностью. Набивка должна быть смазана, и для надлежащей смазки должен поддерживаться поток из коробки сальника от 40 до 60 капель в минуту. Это делает этот тип уплотнения непригодным для ситуаций, когда утечка недопустима, но они очень распространены в крупных отраслях первичного сектора, таких как горнодобывающая и целлюлозно-бумажная промышленность.


Погружение или погружение : Под погружением здесь понимается высота между свободной поверхностью всасывающего бака и всасывающей трубой насоса.

Рис. 13 Минимальное погружение во избежание образования вихрей.

Попробуйте это веб-приложение для расчета минимальной высоты погружения.

Вот красивое изображение осевого насоса с проблемой погружения всасывающего патрубка.

смотрите это видео на погружении

Гидравлический институт издает руководство по конструкции всасывающего патрубка насоса, в котором даются подробные рекомендации.

Насосная компания Goulds бесплатно предоставляет аналогичные рекомендации по конструкции всасывающего патрубка.


Разделитель потока на всасывании : металлическое ребро на всасывании насоса, которое устанавливается на некоторых насосах. Его цель — удалить крупномасштабные вихри, чтобы линии потока были как можно более параллельны, когда жидкость входит в проушину рабочего колеса.


Всасывающий патрубок : устройство, которое помогает выпрямить поток перед насосом, имеющим изгиб на 90 градусов непосредственно перед ним.

Насколько мне известно, существует два типа присосок.

Другой тип всасывающей направляющей — лопаточная система Cheng

.

Пластина Cheng, см. Cheng Fluid Systems

Еще одним производителем стандартных компонентов всасывающей направляющей диаметром от 2 до 14 дюймов является компания Metraflex.Bell Gossett производит всасывающую направляющую, которую они называют всасывающим диффузором.

см. Брошюру Bell Gossett по всасывающим диффузорам


Всасывающая заслонка : см. Всасывающую направляющую.


Удельная скорость всасывания : число, указывающее, достаточны ли условия всасывания для предотвращения кавитации. По данным Гидравлического института, удельная скорость всасывания должна быть менее 8500. Другие эксперименты показали, что удельная скорость всасывания может достигать 11000.

Когда насос имеет высокое значение удельной скорости всасывания, это также будет означать, что входная площадь рабочего колеса должна быть большой, чтобы уменьшить скорость на входе, которая необходима для обеспечения низкого NPSHR. Однако, если вы продолжите увеличивать площадь впуска рабочего колеса (для уменьшения NPSHR), вы достигнете точки, где площадь впуска будет слишком большой, что приведет к рециркуляции на всасывании (гидравлически нестабильно, вызывая вибрацию, кавитацию, эрозию и т. Д.). Рекомендуемое значение максимальной удельной скорости всасывания — избежать достижения этой точки.(абзац предоставлен Майком Таном из группы форума по насосам).

Сохранение удельной скорости всасывания ниже 8500 также является способом определения максимальной скорости насоса и предотвращения кавитации.

Для насоса двойного всасывания половина значения Q используется для расчета удельной скорости всасывания.

Удельная скорость всасывания рассчитывается по формуле:

см. Также удельную скорость

Преобразование удельной скорости всасывания из метрических в британские S м приведено ниже:

Термин N SS также используется для обозначения удельной скорости всасывания.

Согласно Институту гидравлики, эффективность насоса максимальна, когда удельная скорость всасывания составляет от 2000 до 4000. Когда S выходит за пределы этого диапазона, эффективность должна быть снижена в соответствии со следующим рисунком.

Источник: журнал Pump & Systems, август 2005 г.

статью по этой теме см. Specific-speed_primer.pdf

, а вот калькулятор в веб-приложении для расчета удельной скорости всасывания.

В следующей таблице приведены более точные рекомендации по желаемым рабочим диапазонам скорости всасывания.

Источник: Практика перерабатывающей промышленности RESP 001 Проектирование насосных систем, в которых используются центробежные насосы.


Статический напор на всасывании : разница в высоте между уровнем жидкости в источнике жидкости и центральной линией насоса (см. Рисунок 4). Эта головка также включает в себя любой дополнительный напор, который может присутствовать на поверхности жидкости всасывающего бака, например, как в случае всасывающего бака под давлением.


Статический подъемник на всасывании : такое же определение, как у статического напора всасывания.Этот термин используется только тогда, когда осевая линия насоса находится над поверхностью жидкости всасывающего резервуара.


Система : как в насосной системе. Система включает в себя все трубопроводы, включая оборудование, начиная с точки входа (часто поверхность жидкости всасывающего резервуара) и заканчивая точкой выхода (часто поверхность жидкости резервуара слива).


Системная кривая : графическое представление зависимости общего напора насоса от расхода. Расчеты выполняются для общего напора при различных расходах, эти точки связаны и образуют кривую, называемую системной кривой.Его можно использовать для прогнозирования работы насоса при различных расходах. Общий напор включает статический напор, который является постоянным, и напор трения и разницу скоростного напора, которая зависит от расхода (см. Рисунок 11). Пересечение системной кривой с характеристической кривой насоса определяет рабочую точку насоса.

Изменений в систему, такие как открытие или закрытие клапанов или делая выпускную трубу длиннее или короче изменят головку трения, который изменит форму кривой системы и, следовательно, рабочую точку.На следующем рисунке изображена система со статическим напором 100 футов и общим сопротивлением системы примерно 20 футов, показанной кривой A. На выходе насоса имеется клапан, который частично закрыт. Если напор трения увеличивается (т. Е. Клапан закрыт), рабочая точка сместится с A на точку B, и поток упадет. Если напор трения уменьшается (т. Е. Открывается клапан), рабочая точка переходит в точку C, и расход увеличивается.


Системные требования : Те элементы, которые определяют общий напор: трение и условия на входе и выходе системы (например, скорость, высота и давление).


Уравнение Свами-Джайна : уравнение, которое может использоваться вместо уравнения Коулбрука для расчета коэффициента трения f.


Тиксотропный : Свойство жидкости, вязкость которой уменьшается со временем.


Общий динамический напор : идентичен общему напору. Этот термин больше не используется и был заменен более коротким общим напором.


Общий напор : разница между напором на нагнетательном и всасывающем фланцах насоса (син. Общий динамический напор.напор насоса, напор системы). см. также tutorial3.htm


Общий статический напор : Разница между статическим напором нагнетания и всасывания, включая разницу между поверхностным давлением нагнетательного и всасывающего резервуаров, если резервуары находятся под давлением (см. Рисунок 4). См. Также tutorial3.htm


Турбулентный : Поведение жидких предметов в потоке, характеризующееся быстрым движением частиц во многих направлениях, а также общим направлением всего потока жидкости.


Вакуум : давление ниже атмосферного.


Лопатки (кол-во) : см. Impeller.htm.


Частота прохождения лопаток : при проведении анализа вибрации эта частота (количество лопаток, умноженное на скорость вала) и даже кратные ей, отображается как пик, который может указывать на поврежденное или несбалансированное рабочее колесо.

Рис. 15 Спектры шумовой вибрации, показывающие частоту прохождения лопатки (источник: The Pump Handbook publ.по McGrawHill)

см. Статьи об источниках вибрации насоса на этой веб-странице: pumpworld.htm


Пластинчатый насос : см. Радиально-пластинчатый насос.


Пластинчатый насос (гидравлический) : поршневой насос прямого вытеснения. Пластинчатые насосы успешно используются в самых разных областях (см. Ниже). Благодаря прочности лопастей и отсутствию контакта металл-металл, лопастные насосы идеально подходят для маловязких, несмазывающих жидкостей до 2200 сСт / 10 000 SSU.К таким жидкостям относятся СНГ, аммиак, растворители, спирт, жидкое топливо, бензин и хладагенты.

1. Ротор с прорезями или рабочее колесо эксцентрично поддерживается в циклоидальном кулачке. Ротор расположен близко к стенке кулачка, поэтому образуется полость в форме полумесяца. Ротор уплотняется в кулачке двумя боковыми пластинами. Лопатки или лопасти входят в прорези крыльчатки. Когда рабочее колесо вращается (желтая стрелка) и жидкость входит в насос, центробежная сила, гидравлическое давление и / или толкатели толкают лопатки к стенкам корпуса.Плотное уплотнение между лопастями, ротором, кулачком и боковой пластиной является ключом к хорошим характеристикам всасывания, характерным для принципа лопастного насоса.

2. Корпус и кулачок нагнетают жидкость в насосную камеру через отверстия в кулачке (маленькая красная стрелка на дне насоса). Жидкость попадает в карманы, образованные лопатками, ротором, кулачком и боковой пластиной.

3. По мере того, как рабочее колесо продолжает вращаться, лопасти перемещают жидкость к противоположной стороне полумесяца, где она выдавливается через выпускные отверстия кулачка, когда лопасть приближается к точке серпа (маленькая красная стрелка на стороне насоса. ).Затем жидкость выходит из выпускного отверстия.

Rexroth — крупный производитель пластинчатых насосов https://www.boschrexroth.com/en/us/


Давление пара : давление, при котором жидкость кипит при определенной температуре.

Рис. 16 Граница между жидкой и паровой фазами жидкости. Жидкость можно испарить, увеличивая температуру или уменьшая давление.

Рисунок 17 Зависимость давления пара оттемпература для различных жидкостей.


Вентури (закон Бернулли) : трубка Вентури имеет постепенное сужение это открывается в постепенное расширение. Область ограничения будет иметь более низкое давление, чем область ограничения. увеличенное пространство перед ним. Если разница в диаметрах большая, вы можете даже создают очень высокий вакуум (-28 футов водяного столба). Я использую дешевую пластиковую трубку Вентури от Фишера или Коула Палмера. для эксперимента, который я провожу, чтобы продемонстрировать давление пара во время моих обучающих семинаров, и это очень легко создать очень высокий абсолютный вакуум.

В некоторых местах я не могу провести этот эксперимент, потому что в гостиничных номерах нет источника воды, жаль, потому что это всегда выигрыш, поэтому мне нужно вернуться к видео. Если вы хотите приобрести этот изящный пластик Вентури вы можете приобрести здесь, на сайте labsupplyoutlaws.com, это довольно недорого.

Непросто понять, почему низкое давление возникает в области малого диаметра трубки Вентури. Я придумал это объяснение, которое, кажется, помогает.

Понятно, что весь поток должен проходить от большего участка к меньшему. Или в другом Другими словами, расход останется неизменным в большой и малой частях трубки. Скорость потока то же самое, но скорость меняется. Скорость больше в небольшом участке трубки. Там есть связь между энергией давления и энергией скорости, если скорость увеличивает давление энергия должна уменьшиться. Это принцип сохранения энергии в действии, который также является законом Бернулли.Это похоже на велосипедиста на вершине холма. Вверху или в точке 1 (см. Рис. 18 ниже) значок высота велосипедиста высокая, а скорость низкая. Внизу (точка 2) высота невысока и скорость высока, энергия возвышения (потенциальная) была преобразована в энергию скорости (кинетическую). Давление и энергии скорости ведут себя точно так же. В большей части трубы давление высокое, а скорость низкая, в небольшая часть, давление низкое, а скорость высокая.

Рис. 18 Эффект Вентури.

Закон Бернулли — это отношение между двумя точками в системе, которое гласит, что сумма энергии, соответствующие давлению, скорости и высоте, должны быть сохранены.

Общая форма закона (без учета трения):


где p 1 — давление, v 1 скорость и h 1 высота в точке 1 и те же параметры используются в точке 2.Гамма — это плотность жидкости, а г ускорение свободного падения.

В случае велосипедиста давление отсутствует, и могут изменяться только скорость и высота, так что Закон Бернулли становится:


по мере того, как велосипедист спускается с холма h 2 становится меньше, чем h 1 и до сбалансируйте уравнение, тогда v 2 должно быть больше, чем v 1 .

В случае трубки Вентури нет изменения высоты, и могут изменяться только скорость и давление, так что закон Бернулли становится:


Мы ясно видим, что если v2 больше v1, то p2 должно быть меньше v1, чтобы сбалансировать уравнение.

, статью по этой и смежным темам см. В файле unknown_aspects-pump-syst.pdf

.

Вязкость : свойство, по которому можно оценить сопротивление жидкости движению. Сопротивление вызывается трением между жидкостью и граничной стенкой, а внутри — слоями жидкости, движущимися с разными скоростями. Чем более вязкая жидкость, тем выше потери на трение в системе. На центробежные насосы влияет вязкость, и для жидкостей с вязкостью выше 10 сСт производительность насоса должна быть скорректирована.

На следующем рисунке, который вы можете найти в каталоге насосов Goulds в техническом разделе, показано влияние вязкости на производительность насоса.

Следующий рисунок представляет собой диаграмму значений вязкости для различных жидкостей, которую вы можете найти в справочнике Cameron Hydraulic.

Базовая единица вязкости известна как Пуаз или сантипуаз (сП), названная в честь французского ученого Пуазейля, открывшего практический метод измерения вязкости.Греческая буква используется для обозначения вязкости. Существует два типа вязкости, первый из которых только что упомянут, известен как абсолютная вязкость, а другой, для которого используется греческая буква ню, называется кинематической вязкостью. Единица кинематической вязкости — сантисток (сСт), названная в честь английского ученого Стокса.

Связь между ними:

Данные о вязкости обычных жидкостей

также можно найти в каталоге насосов Goulds.

Коррекция вязкости : см. Вязкость.


Насос с вязкостным сопротивлением : насос, рабочее колесо которого не имеет лопастей, но работает за счет контакта жидкости с плоской вращающейся пластиной, вращающейся с высокой скоростью для перемещения жидкости.

Вязкостной насос

для получения дополнительной информации см. Specialty_pumps.pdf


Улитка : кожух синхронизатора.


Vortex : см. Погружение.


Вихревой насос : см. Насос с утопленным рабочим колесом.


Гидравлический удар (скачок давления) : Если в системах с длинными нагнетательными линиями (например, в промышленных и муниципальных системах водоснабжения, на нефтеперерабатывающих заводах и электростанциях) перекачиваемая жидкость ускоряется или замедляется, возникают колебания давления из-за изменений по скорости. Если эти изменения скорости происходят быстро, они вызывают скачок давления в системе трубопроводов, возникающий в точке возмущения; распространение происходит в обоих направлениях (прямые волны), и эти волны отражаются (непрямые волны) в точках разрыва, например.грамм. изменения площади поперечного сечения, ответвлений труб, регулирующих или запорных клапанов, насосов или резервуара. Граничные условия определяют, будут ли эти отражения вызывать отрицательные или положительные выбросы. Суммирование всех прямых и непрямых волн в данной точке в данный момент времени дает условия, существующие в этой точке.

Эти скачки давления, в дополнение к нормальному рабочему давлению, могут привести к чрезмерному давлению и напряжениям в компонентах установки. В тяжелых случаях такие скачки давления могут привести к выходу из строя трубопроводов, арматуры или корпусов насоса.Минимальный скачок давления может, особенно в самой высокой точке установки, достичь давления пара перекачиваемой жидкости и вызвать испарение, ведущее к отделению столба жидкости. Последующее повышение давления и столкновение разделенного столба жидкости может привести к значительному гидравлическому удару. Скачки давления, возникающие в этих условиях, также могут привести к выходу из строя или разрушению компонентов установки.

Для максимального колебания давления можно использовать формулу скачка давления JOUKOWSKY:

Δp = ρ.а. Δv

Где ρ = плотность перекачиваемой жидкости

a = скорость распространения волны

Δv = изменение скорости потока в трубе.

Полное колебание давления, соответствующее изменению скорости Δv, происходит только в том случае, если изменение скорости Δv происходит в течение периода.

t ≤ время отражения tr = 2.л / а

, где l = расстояние между ближайшей несплошностью (точкой отражения) и точкой возмущения.

Вклад Моше Шаяна с дискуссионного форума по насосам.

Эта статья под названием Val-Matic Valve, озаглавленная «Регулирование помпажа в насосной станции», появилась в журнале Pumps & Systems за март 2007 г. это очень хорошее описание того, как возникает гидравлический удар и как его можно контролировать.


Вы можете присоединиться к дискуссионному форуму центробежного насоса по адресу https://groups.yahoo.com/neo/groups/pumpfundamentals/info

TOP

Авторские права 2019, PumpFundamentals.com

Преимущества и то, как они улучшают гидравлические системы.

Гидравлические аккумуляторы — это сосуды под давлением, в которых накапливается и отводится энергия в виде жидкости под давлением. По сути, потенциальная энергия хранится в сжатом газе и высвобождается по требованию, чтобы вытеснить масло из аккумулятора в контур.Вот некоторые важные преимущества, которые дают гидроаккумуляторы, и то, как они улучшают гидравлические системы.

Изображение любезно предоставлено Accumulators Inc.

Накопитель энергии. Одна из важнейших функций аккумуляторов — это их способность накапливать энергию. В частности, при циклических или изменяющихся операциях аккумулятор разряжается в периоды высокого спроса и перезаряжается в периоды низкого спроса. Один из примеров — машины для литья пластмасс под давлением, где высокое давление и сила зажима необходимы только для короткого сегмента всего производственного процесса.

Аккумуляторы часто используются для пополнения потока насоса во время пиковой нагрузки. Без аккумулятора насос и двигатель должны быть рассчитаны на максимальную мощность, даже если максимальная мощность требуется только на мгновение. С аккумулятором система может быть рассчитана на средний спрос. Это, в свою очередь, позволяет использовать насос меньшего размера, который подзаряжает систему в периоды пониженного спроса. Это также означает меньший двигатель и общую систему, которая требует меньше энергии, вырабатывает меньше тепла и стоит меньше.

Аварийное резервное копирование. Аккумуляторы могут поддерживать заряд высокого давления почти неограниченное время и служить в качестве аварийного источника питания, если машина потеряет электроэнергию или откажет насос. Установки правильного размера могут обеспечить необходимый поток и давление для втягивания цилиндра, закрытия клапана, открытия пресс-формы или перемещения машины в безопасное положение до восстановления питания или устранения неисправности.

Аккумуляторы

также могут защитить смазочную пленку в ответственных подшипниках, которые должны иметь постоянную подачу масла.Если смазочный насос выходит из строя, гидроаккумулятор поддерживает давление до тех пор, пока машина не остановится или вторичный насос не восстановит поток.

Снижение вибрации и ударов. Насосы, особенно поршневые и шестеренчатые, создают пульсации давления в гидравлических контурах. Значительные скачки давления в гидравлических контурах тоже довольно распространены. Быстрое замедление больших цилиндров, удары ковшей экскаватора и внезапное закрытие клапана могут вызвать скачки давления. Гидравлическая жидкость легко передает удары и пульсации через шланги и трубки, что может нанести ущерб компонентам, расположенным ниже по потоку.

Установка небольшого аккумулятора рядом с выпускным отверстием насоса может поглотить пульсации, минимизировать вибрацию и обеспечить более плавную работу. Добавление гидроаккумулятора в возвратную линию машин может смягчить удары и смягчить воздействие «водяного» удара, чтобы предотвратить повреждение чувствительных компонентов. Уменьшение ударов системы продлит срок службы компонентов, уменьшит утечки из соединителей и соединений и снизит затраты на техническое обслуживание.

Аккумулятор также снижает общий уровень шума гидравлической системы и передачу шума, переносимого жидкостью, на соседние механические конструкции, которые, в свою очередь, могут резонировать.Результат — более тихие машины и более довольные операторы.

Компенсация утечки. Некоторые гидравлические системы должны поддерживать давление и силу, когда нет движения или потока, например, удерживание нагруженного цилиндра в выдвинутом положении или удерживание зажима закрытым в течение продолжительных периодов времени. В таких случаях пользователи часто отключают систему для экономии энергии. В гидроаккумуляторе может поддерживаться постоянное давление, даже если жидкость медленно вытекает изнутри через уплотнения поршня или клапанные зазоры. Только когда давление в контуре падает ниже установленных пределов, насос запускается и перезаряжает аккумулятор.

Температурная компенсация. Колебания температуры окружающей среды или рабочих условий машины могут вызывать колебания температуры гидравлической жидкости, что влияет на общее давление в системе. Аккумулятор может компенсировать связанные с температурой перепады давления в закрытой гидравлической системе. Аккумуляторы минимизируют влияние изменений давления за счет добавления или уменьшения количества жидкости в контуре.

Более быстрый ответ. Баллонные и диафрагменные гидроаккумуляторы имеют практически мгновенный отклик и могут быстро подавать жидкость к быстродействующим сервоприводам и пропорциональным клапанам и улучшать их работу.Аккумуляторы также могут немедленно удовлетворить требования к пиковой нагрузке; помогают поддерживать постоянное давление в системах с помощью насосов переменной производительности; и обеспечивают компенсацию сил в непрерывных процессах, например при прокатке материалов с различным рабочим сопротивлением, что обеспечивает стабильную производительность и повышает производительность и качество.

Гидравлический аккумулятор — HAWE Hydraulik

Флюидлексикон

#ABCDEFGHIJKLMNOPQRSTUVWZ

Ткань materialsFail safeFail безопасное обнаружение positionFailure rateFast excitationFatigue strengthFault detectionFault codeFault diagnosticsFeed вперед Система controlFeedbackFeedback signalFeedback для непрерывного регулируемого движения valvesFeed circuitFeed heightFeed о наличии cylinderFieldbusFiller filterFilling pressureFilterFilter cartridgeFilter characteristicsFilter classFilter кумулятивного efficiencyFilter грязи loadFilter dispositionFilter efficiencyFilter elementFilter для масла removalFilter в главной conduitFilter installationFilter lifeFilter poresFilter selectionFilter размер Поверхность фильтраТкань фильтраФильтр с байпасным клапаномФильтрацияЭффективность фильтрации в целом Конечное устройство контроля Точное управление потоком ФитингиУстановка с коническим кольцомУстановка с фрикционным кольцомФиксированный поршневой двигательФиксированное программное управлениеФиксированный дроссельФлагПламенеустойчивые гидравлические жидкостиФланцевое соединениеФильтр на фланцеФланцевое крепление-форсункаФильтр цилиндра ttingsПлоские уплотненияФлис-фильтрФлисовый материалФлип-флопГрафик расхода / давленияФункция расхода / сигналаКоэффициент расхода Kv (значение Kv) клапанаКоэффициент расхода αDКлапан регулирования расходаКлапан регулирования расхода, 3-ходовой клапан регулирования расходаСхема расходаПрерывно регулируемые клапаныРазделитель расходаДеление потокаПотери потери силыПоток в зазорахПоток в трубопроводахМонитор расхода Скорость потока, зависящая от скорости потери давленияРасход / характеристика давленияСкорость потока / характеристическая кривая сигнала Усиление скорости потока Асимметрия скорости потока Разделение скорости потока Линейность скорости потока Процедура измерения скорости потока Процедура измерения скорости потока Пульсация скорости потока Диапазон требуемого потока Диапазон насыщения скорости потока Жесткость скорости потока Сопротивление потока Сопротивление потока фильтров Датчик потока с овальным ротором в сборе звукиПереключатель потокаПотоковые клапаны Скорость потока в трубопроводах и клапанахТрение жидкости Датчик уровня жидкости Механика жидкости Стандарты мощности жидкости Энергетические системы с магистральным трубопроводом Жидкости Жидкость Технология Промывка системыПромывка силовой агрегат Давление промывкиПромывка насосаПромывочный клапан Тенденция к пенообразованию Последующий регулирующий клапан Последующая ошибка скорости Последующее отслеживание Ошибка последующего отслеживанияПодъемная установка Силовая временная диаграмма Сила: импульс, сигнал: импульсная плотность Силовая обратная связь Усиленная обратная связь Измерение силы EoForce Коэффициент умножения силыПредисловие к онлайн-версии Fluidlex v of Oikon + P bis Z «(технический глоссарий O + P» Гидравлическая технология от A до Z «) Эластичность формы Форма импульсов Прямой и обратный ходЧетырехходовой клапанЧетырехпозиционный клапанЧетырехквадрантный режим работы Рамочные условияЧастотный анализЧастотный фильтрПредел частотыЧастотная модуляцияЧастотная характеристикаЧастотная характеристика для заданного входаЧастотный спектрФрикционное движениеФункциональные потериФрикционные условия диаграмма

Компенсация радиального зазораРадиально-поршневые двигателиРадиально-поршневой насосРадиально-поршневой насос с внешними поршнямиПараллельный генераторДиапазон рабочего давленияРапсовое маслоБыстрый ходБыстрый ход контуров Скорость повышения давленияСоотношение площадей поршня αСила реакции на контрольной кромкеРеакционная передача Легко биоразлагаемые жидкости Референсное время контрольного сигнала Реальное время удержания грязи Глушитель Регенеративный контур Регулятор Регулятор Регулятора с фиксированной уставкой Относительное колебание подачи δ Относительная амплитуда сигнала Съемный обратный клапан Давление отпускания Сигнал отпускания Клапан сброса Дистанционное управление Повторная точность (воспроизводимость) Условия повторения ВоспроизводимостьПерепрограммируемое управлениеТребуемая степень фильтрацииПрофиль требованияРезультат измерения емкости резервуараОстаточное остаточное сопротивление NSE pressureResponse sensitivityResponse thresholdResponse время в cylinderResponse valueRest positionRetention rateReturn lineReturn линии filterReturn линии номер pressureReversal errorReversible гидростатическое motorReversing motorReversing pumpReynolds ReRigid лопасти machineRippleRise темп signalRise responseRise timeRodless cylinderRod sealingRoller leverRolling лопастного motorROMRoof-образной sealRotary amplifiersRotary потоком dividerRotary трубы jointRotary pistonRotary TRANSFER jointsRotary valveRotation Servo valveRound уплотнительные кольца Рабочие характеристики Постоянная времени разгона До

D-элемент Демпфированные собственные колебания Демпфированные собственные колебания Коэффициент демпфирования d Демпфирование D Демпфирующее устройство Демпфирование в цепи управления Демпфирующая сеть Демпфирование движения цилиндра Демпфирование клапанов Демпфирующее давление Демпфирующее уплотнениеКоэффициент трения Дарси? клапанПоток подачиДетентДетергент / диспергент минеральные маслаПульсация потока доставкиФункция плотности жидкостиДифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления Дифференциальный датчик давления ryЦифровое управлениеТеория цифрового управленияЦифровое управление с удержанием сигналаЦифровые цилиндры (с несколькими положениями) Шаг цифрового входаЦифровое управление клапанамиЦифровой измеряемый сигналЦифровой сбор измеренных значенийЦифровая процедура измеренияЦифровая измерительная технологияЦифровой насосЦифровая технологияЦифровая обработка сигналовЦифровые сигналыЦифровая системаЦифровая технологияЦифровой клапан с квантованием потока, 2 направления срабатывания клапана с прямым срабатыванием Клапан управления потокомРаспределительный клапанНаправленный клапанНаправленный клапан, 3-ходовые клапаныНаправленные клапаны 2-ходовые клапаныГрязепоглощающая способность фильтраГрязеудерживающая способностьГрязеочистительДиск-седельный клапанДискретные контроллерыДискретные Диспергентные маслаДисперсные камерные машиныКонтроль смещенияДиапазон смещенияДиапазон смещенияДиапазон смещенияДиапазон смещения эффект Цилиндр двойного действия Ручной насос двойного действия Двойное горловое уплотнениеДвойной насосВремя спада Поток Перетаскивание Давление потокаСкорость потокаДрейфПриводная мощностьДрайверВремя сбросаДвойной контур управленияНасос двойной переменной

TachogeneratorTandem cylinderTankTeach в programmingTechnical cyberneticsTelescopic connectionTelescopic cylinderTemperature компенсации при измерении измерений technologyTemperature driftTemperature в hydraulicsTemperature измерения deviceTemperature rangeTemperature responseTerminalTest benchTest conditionsTest pressureTest signalsThermodynamic measuringThermoplastic elastomersThermoplasticsThickened waterThin фольги elementThin фольги деформации gaugeThreaded вала sealThree камеры valveThree вход controllerThree положение valveThree этап сервопривода valveThresholdThrottleThrottle проверить valveThrottle formsThrottle valveThrottling pointThrough поршень стержень, шток-цилиндр, управление на основе времени, управление рабочим процессом на основе времени, непрерывный сигнал, временные сигналы управления, постоянная времени, дискретное время, элемент таймера, управление временем, допуск на скачкообразную реакцию агрегата, предел максимального давления, усилитель крутящего момента, электрогидравлический, характеристика момента, ограничение момента, измерение момента, измерение крутящего момента, двигатель, крутящий момент, мультипликатор. nОбщая эффективностьОбщее давлениеПередаточный элементПередаточный коэффициентПередаточная функцияФункция переноса системы φСигнал передачиПереходный откликПереходная частьЭффективность передачиМетод передачиДавление передачиПередаточное отношениеСкорость передачиТехнология передачиТрансмиттер (единичный преобразователь) Транспортное движение цилиндраТрибологияСигнал триггера — Двухточечный фильтр — Двухточечный регулятор — Двухпозиционный клапан — Двухпозиционный регулятор потока Квадрантный режимДвухступенчатое управлениеДвухступенчатый сервоклапанТипы тренияТипы движения цилиндровТипы крепления цилиндров

Фланец

SAEСхема безопасностиСхемы управления безопасностьюЗадвижка-задвижкаПредохранительБезопасность системыПравила безопасностиРиск безопасностиПредохранительный клапанПробоотборник Блок отбора проб и удержанияСхема управления пробойКонтроллер отбора пробОшибка выборкиУправление обратной связью пробыЧастота отбора пробВремя отбора пробПередаточные элементы для отбора пробОткладочный фильтр-шнекНасос осыпания ) Уплотняющий элемент Уплотняющее трение Уплотняющий зазор Уплотнительный край Уплотнительный поршень Уплотнительный профиль Уплотнительный набор Уплотнительный набор Система уплотнения Утечка уплотнения Предварительная нагрузка уплотнения Уплотнения Износ уплотненияСедельный клапанВторичная регулировка гидростатических трансмиссийВторичные меры (в случае шума) Вторичное давлениеСегментный компенсатор давленияСамоконтроль системСамовсасывающий насосСамостоятельная настройка датчиков положения-регуляторыДуплексный датчик положенияДукторные регуляторы температуры мера йти во время deviceSensitivity гидравлических устройств dirtSensorSensor для управления фактического valuesSensor systemSensor technologySensor valveSeparate цепи hydraulicSeparation capabilitySeparatorSequence controlSequence из actuatorsSequence diagramSequence из measurementsSequentialSerialSeries-производства cylinderSeries circuitSeries connectionSeries соединения characteristicServo всасывания valveServo actuatorsServo cylinderServo driveServo гидравлического systemServo motorServo pumpServo technologyServo valveSet геометрической displacementSet действующего conditionsSetpointSetpoint generationSetpoint generatorSetpoint processingSet давление pe Точка настройкиУстановка импульсаПроцесс настройкиВремя настройкиВремя настройки давленияВремя настройки T gНагрузка на вал поршневой машиныСтабильность сдвига гидравлической жидкостиУдарная волнаТвердость берегаКороткоходовой цилиндр Блок отключенияОтключающий клапанКлапан-заслонкаСигналСигнал Формы выходного сигнала Формы выходного сигналаСигнальный усилитель elementSignal parameterSignal pathSignal processingSignal processorSignal selectorSignal stateSignal Переключаемый сигнал technologySignal transducerSilencerSiltingSingle действующего контроль cylinderSingle цепь systemSingle для управления с обратной связью controlSingle actuatorSingle краем circuitsSingle или отдельным приводом для станкиОдноцелевых квадранте operationSingle resistorSingle стадии серво valvesSintered металла filterSinus responseSI unitsSix-ходового valveSlave поршня principleSliderSliding frictionSliding gapSliding кольцо sealSlipperSlotted скорости близости switchesSlow двигатель с высоким крутящим моментомМалый диапазон сигналаСглаживание сигналаСоленоидСрабатывание соленоида Растворимость газа в гидравлической жидкостиЗвук в воздухеЗвук в жидкостиЗвуковое давление pИсточники погрешности в измерительных приборахСпециальный цилиндрСпециальный шестеренчатый насосСпециальный импедансСкоростная характеристика гидравлических двигателейСхема управления скоростью Измерение скоростиДиапазон уплотненияКвадратное передаточное отношениеСферический конус с пружинным конусом Напряжение сжатия в уплотнениях Стабилизированные гидравлические масла Анализ устойчивости Критерии стабильности Стабильность гидравлической жидкости Поэтапное регулирование часов Поэтапный насос Поэтапный переключатель двигателяСтандартный цилиндрСтандартное отклонение измерения Давление в режиме ожидания Время пуска Пусковая характеристика Пусковые характеристики гидравлических двигателей Пусковое положение Основная positionStarting torqueStart pressureStartup discontinuityStartup ProcessStart viscosityState controllerState diagramState equationsStatement listStatement listState variableStatic behaviourStatic параметры плавной регулировкой valvesStatic sealStationary flowStationary hydraulicsStationary stateStatus monitorsSteady stateStep управления actionStep Диаграмма controlStep functionStepper motorStepper двигателя управлением пропорционального направленного valveStick slipStiction от sealsStiffness из actuatorsStiffness гидравлического fluidStraight трубы fittingStrain gaugeStress relaxationStretch -загрузка уплотненийСальниковая коробкаПодсхема Погружной двигательПодсистема управленияВсасывающая характеристикаВасосная фильтрацияВасосная линияВасосное давлениеВсасывающее давлениеРегулирование давления всасыванияУправление всасывающей дроссельной заслонкойВсасывающий клапанКонтроллер суммарной мощностиСуммарное давлениеПодача блока управленияДавление питанияСостояние подачи гидравлической жидкостиПоверхностный фильтрПоверхностный фильтрПоверхностная пенаПоверхность пластинчатый насосПодводной насосНабухание герметиковДавление выключенияВключение характеристики соленоидаВремя включенияВключениеПоведение переключения устройствКлючающая способность гидрораспределителейКоммутационные характеристикиЦикл переключенияПереключающий элементМетоды переключения (электрические) Способы переключения для гидронасосовКоммутация переключаемого положения переключаемого перепада давления в случае переключения переключаемых положений переключаемых клапанов (гистерезис) Удар при переключенииСимволы переключенияВремя переключенияПоворотный двигательПоворотный винтовой фитингСимволыСинхронизирующий цилиндрСинхронное управлениеСинхронный датчик положенияСистемно-совместимый сигналСистемный заказСистемное давление

Обратное давлениеКлапан обратного давленияЗаднее кольцоШариковый клапанПроход полосыБанковый клапан в сборе (моноблок) БарБарометрическая обратная связьСреднее уплотнение перегородкиBasicBaudСила с изгибом оси БернуллиУравнение БернуллиБета-значение (значение β) ДвоичныеДвоичные символыДвоичный элемент схемыДвоичный кодБинарное управление Выпускной фильтр Выпускной клапан (Hy), выпускной клапан (PN) Блок-схема Положение блокировки Блок штабелирования в сборе Продувочный эффект Давление продувки Обдув поршневых уплотнений Диаграмма характеристик Диаграмма характеристик (частотные характеристики) Графики связиНижний конец цилиндраБез отскокаТрубка Бурдона Тормозной клапан Точка разветвления Отводное давлениеФильтр отрыва отталкивающее давление расстояние до направления потока жидкости Встроенная грязь Объемный модуль Давление разрыва Автобусная системаБайпасБайпасное расположениеБайпасная фильтрацияБайпасный клапан

Магнитный filterMain valveMale fittingManual adjustmentManual modeMaterials для обработки данных sealsMeasured signalMeasured valueMeasured variableMeasurement данных processingMeasurement (кондиционирование) Измерение uncertaintyMeasuringMeasuring accuracyMeasuring amplifierMeasuring усилитель с несущей процедуры frequencyMeasuring chainMeasuring converterMeasuring deviceMeasuring errorMeasuring instrumentsMeasuring (системы) Измерение rangeMeasuring дроссельной заслонки (калиброванное отверстие) Измерение turbineMechanical actuationMechanical dampingMechanical feedbackMechanical impedanceMechanical lossesMedium Диапазон давлений Емкость памяти Цепи памятиМеталлические уплотненияУправление измерениемМетоды установки клапанаДвигатель MH (станок с изогнутой осью) МикроэмульсияМикрофильтрМикрогидравликаМинеральные маслаМини-измерительное устройство (для работы в режиме онлайн) Минимальный поток управленияМинимальное поперечное сечение для потока управленияМинимальное давлениеМалогабаритный контурМодульная система управленияМинутыМобильная система управления designModula r проектирование систем управленияМодульная системаМодуляцияМодульМониторингСистемы мониторингаСистемы мониторинга гидравлической жидкостиМоностабильное управление швартовкойСхема движенияУправление двигателем (замкнутый контур) Управление двигателем (разомкнутый контур) Скольжение мотора Жесткость двигателяМонтажные размеры (схемы отверстий) Монтажная плитаМонтажная стенкаСистема с подвижными змеевикамиМногоконтурная система насосМногоконтурная система Функциональный клапан Многоконтурные схемы управления с обратной связью Мультимедийный разъем Многопозиционный контроллер Многоступенчатый гидростатический двигатель Многопозиционный многопроходный тест Многонасосный двигатель Двигатель МЗ (машина с наклонной шайбой)

А / Ц converterAbrasion resistanceAbsolute цифровой измерительный systemAbsolute фильтрации ratingAbsolute измерения systemAbsolute pressureAbsolute давление gaugeAbsolute давления transducerAcceleration feedbackAcceleration measurementAccess timeAccumulatorAccumulator, hydraulicAccumulator зарядки расход valveAccumulator тест diagramAccumulator driveAccumulator lossesAccumulator regulationsAccumulator sizeACFTD dustAcoustic расцепления measuresAcoustic impedanceAC solenoidAction методов множественного resistanceActive sensorActual pressureActual valueActuated timeActuating для valvesActuationActuation elementActuatorAdaptationAdaptive controlAdaptive controllerAddition pointAdditiveAdditive (для смазочных материалов) Адрес Адгезионные режимы Адгезионные свойства гидравлических жидкостей Адгезионные соединения труб Регулируемый поршневой насос Регулируемый дроссель Регулировка поршневых машин Время регулировки ДопускВозрастание гидравлических жидкостей Старение уплотнений Воздухоочиститель Fine Test Dust (ACFTD) Расход воздухаAi г в стоимостном выражении oilAlgorithmAlphanumericAlphanumeric codingAlphanumeric displayAlpha из filtersAmplifierAmplifier cardAmplitude marginAmplitude modulationAmplitude plotAmplitude ratioAmplitude responseAnalogueAnalogue computerAnalogue controlAnalogue controllerAnalogue данные acquisitionAnalogue измеряется valuesAnalogue измерения procedureAnalogue измерения положения technologyAnalogue measurementAnalogue signalAnalogue сигнал processingAnalogue technologyAngle encoderAngle measurementAngular угловой частоты ω EAnharmonic oscillationAnnular область А RAnnular шестеренчатого насоса / motorAnti-вращение элемента для cylindersApparent грязеемкостьАрифметический логический блокСреднее арифметическое, среднее ASCIIASICАсинхронное управлениеПерепад атмосферного давленияАвтоматическое переключение цилиндровАвтоматическое управлениеАвтоматическое обнаружение неисправностейАвтоматический возвратАвтоматическое запечатываниеАвтоматический запускВспомогательное срабатывание клапанов Вспомогательное питание (энергия) Вспомогательные сигналы Вспомогательные переменныеДоступная силаСредний крутящий момент Компенсация осевого зазора вкл. шестеренчатые насосы (так называемая компенсация зазора) аксиально-поршневой станок аксиально-поршневой двигатель аксиально-поршневой насос

I-блок (в системах управления) I-контроллер Идентификация системы Клапан холостого хода Потери холостого хода Давление холостого хода IEC Устойчивость к помехам Импеданс Z Импеллер Напорный поток Подавленное давление Импульсное срабатывание клапанов Импульсный дозирующий лубрикатор Импульсный шум Импульсное сопротивление энкодеров Импульсный датчик положения Импульсная система измерения угла ) Повышение точности индексации с делителями потока Индексирование коэффициентов при использовании делителей потока Точность индикации Диапазон индикации Индикатор Непрямое срабатывание Непрямые методы измерения Индивидуальный компенсатор давления Индуктивное давление Индуктивное измерение положения Индуктивные датчики давленияНадувные уплотненияВлияние на время переключения Индуктивные датчики давленияВходной перепад давления Начальный угол наклона начального давления сигнал Входной сигнал Неустойчивость системы управления Мгновенные рабочие условия Инструкция Характеристики впуска Высота всасывания Интегрированная гидростатическая трансмиссия Интегрированная схема (IC) Интегрированная электроника Интегрированная система измерения положенияКонтроллер интерференцииВзаимодействие с прерывистым режимомВнутреннее управление с обратной связьюВнутренний впуск жидкостиВнутренний шестеренчатый насосВнутренняя утечкаВнутренняя безопасность с раздельным управлением 9Внутренняя поддержка давления

Фильтр сверхтонкой очисткиУльтразвуковое измерение положения Сигнал компенсации зазора Пониженное давление Нестабильный Разгрузочный клапан Полезный объем Коэффициент полезного действия

EDEEPROM (программируемое запоминающее устройство с электронным стиранием) Эффективность Эффективность трубыЭластичность жидкостей под давлениемЭластичные материалы Устройства для измерения давления с эластичной трубой (типа Бурдона) Уплотнение из эластомера / пластика под напряжениемЭластомерыКонкурентная арматураЭлектро-гидравлическая аналогияЭлектрическое срабатываниеЭлектрическое управление мощностью обработки сигнала или сила электрического сигналаЭлектрическая обратная связь приводЭлектрогидравлическая технология управленияЭлектрогидравлический линейный усилительЭлектрогидравлическая системаЭлектрогидравлические системыЭлектромеханические преобразователи сигналовЭлектроуправлениеЭлектрогидравлический усилитель крутящего моментаЭлектромагнитная совместимостьЭлектромеханическое управление перемещением насосов / моторовЭлектронный фильтрЭлектронное распределение потокаЭлектронная обработка сигналовЭлемент для фильтров давленияГидравлическое преобразование энергии sses в гидравликеЭкономия энергии в гидравликеЭнергосбережение в гидравликеМоторное масло в качестве гидравлической жидкостиEPROMEэквивалентный объемный модульЭквивалентная схемаЭквивалентная постоянная времениЭрозионный износОшибкаОшибкоустойчивый компьютерКлассификация ошибки в измерениях Кривая погрешности измерительных приборовПределы ошибки измерительного прибораПороговое значение ошибкиСигнал ошибкиОшибка в датчике ошибкиПредупреждение Клапаны Внешнее деление мощности Внешняя опора

управление обратной связью p / QБумажный фильтрБазовое масло парафинаПараллельная цепь / подключенные параллельноПараллельное соединениеПараллельная обработкаПараметрыФильтрация частичного потокаЭрозия струи частицРазмер частицыПассивный датчикКонтроллерPDPD elementP elementP elementPDeformance / weight ratioPerformance mapPD elementP elementP elementPerformance / weight ratioPerformance mapPeriod patternPhase-frequency responsePhosespessection valvePhase-act Управляемое поведениеПилотный расходПилотная линияПилотные клапаныПилотная ступень для плавно регулируемых клапановПилотный клапанШпиндельный клапанТрубопровод в сбореПропускная способность трубыПолное сопротивление трубыПромежуточная индуктивность трубыЗащита от разрыва трубыВинтовые соединения трубТрубопроводПоршень для быстрого ходаПоршневые машиныПоршневой двигательПоршневой манометр подключение Вставной клапан Вставной клапан, 2-ходовой вставной клапан Вставной клапан, 3-ходовой вставной клапан Вставной усилитель Плунжер Контур поршня для быстрого продвижения Поршень поршня Управление точкойПолиацеталь (POM) Полиамид (PA) Полимерные материалы Политетрафторэтилен (PTFE) Полиуретан (AU, EU ) Порт Поперечное сечение портаЗависимые от положения управляющие сигналыПроцесс блокировки, зависимый от положенияПозиционная / временная диаграмма Диаграмма положенияОшибка положенияОбратная связь по положениюОшибка позиционированияОшибка позиционированияИзмерение положенияИзмерение положения с помощью потенциометраПроцесс измерения положенияДатчики положенияПоложительно-импульсное управлениеПринцип положительного смещенияПостолечение, избыточное отверждениеТочка перегибаХарактеристики мощностиГрафик характеристик мощностиПлотность мощности Контроллер мощности потериПотери мощностиСиловой агрегатСиловая частьРазделение мощностиПередача мощностиПредварительный резервуарПредзаправленный масляный бакПредварительная заправка уплотненийКлапан предварительной заправкиПредварительный фильтрДавление перед нагрузкойКлапан предварительной нагрузкиТочность дроссельной заслонкиПредопределенное время рабочая часть (заданная точка разрыва) Предварительный нагреватель Давление Давление-расход (pQ) в насосе Характеристика давления-расхода (p / Q) Клапан ограничения давления Герметичный соленоид Редукционный клапан (клапан регулирования давления) Редукционный клапан, 3-ходовой клапан давления- Редукционный клапан Функция сигнала давления Диаграмма давления / расхода Срабатывание давления Изменение давления Процесс чередования давления в машинах прямого вытеснения Усилитель давления Центрирование давления на направляющих клапанах Камера давления Компенсатор давления Регулирование давления Характеристика регулирования давления Контур управления давлением Контур управления давлением для переменного насоса Перепад давления Падение давления График падения давления для клапанов Обратная связь по давлению Фильтр давления Дросселирование Поток давления Формы Колебания давления Жидкость под давлением Прирост давления на плавно регулируемых клапанах Манометр Переключатель выбора манометра Градиент давления Напор давления Независимое от давления регулирование расхода Индикация давления Ограничение давления Падение давления Потери давления из-за дросселей Процедуры измерения давления Колебания давления Пик давления Диапазон позиционирования давления Колебания, вызванные пульсацией давления Пульсации давления Диапазоны давления в гидравлической технологии Номинальные значения давления Соотношение давлений Клапан перепада давления Регулятор давления (регулятор нулевого хода) Повышение давления Датчик скачка давления Переключение давления Клапаны подачи давления с регулируемым давлением Клапан Волна давления Первичное срабатывание Первичное и вторичное управление Первичное управление Первичное управление шумом Первичное давление Первичный клапан Печатная плата Приоритетный клапан Управление рабочим процессом в зависимости от процесса Глубина обработки Обработка фактических значений (или сигналов) Профиль загрязнения Программа Носитель программы (память, носитель) Последовательность выполнения программы Блок-схема программыПрограммная библиотекаПрограммный логический контроллер (Программируемый логический контроллер) Программируемый логический контроллер управлениеПрограммированиеЯзыки программированияМетоды программированияСистема программированияПрограммный модульПРОМРаспространение ошибкиПропорциональный усилительПропорциональная технология управленияПропорциональный соленоидПропорциональные клапаныЗащитные фильтрыКонтактный переключательPSIPT1 — КонтроллерPT1 — элементPT2 — КонтроллерPT2 — элементPT1 — элементPT2 — КонтроллерPT2 — элементPT1 — элементPT2 — КонтроллерPT2 — элементИмпульсная кодовая модуляцияИмпульсный датчик подачи для ускоренного хода Насос клапан циркуляции холостого хода Насос с установленными в ряд поршни / рядный поршневой насос

Рассчитано pressureCalculating множественного доступа звук powerCalibrating throttlesCamCAN-BUSCapacitive положения measurementCapillary tubeCarrier смысла с обнаружением столкновений (CSMA / CD) Каскадированный (многоканальный контур) управления systemCascaded controlCavitationCavitation erosionCentralised гидравлического маслом supplyCentralised hydraulicsCentre positionCentrifugal pumpCentring по springsCETOPCharacteristic curveCharacteristic с усредненной hysteresisCharge amplifierCharge pumpCheck valveChipChlorinated hydrocarbonsChopperChurning lossesCircuit diagramCircuit схемаСхема технологийКруглый уплотнительный зазорИндекс циркуляции UПотери циркуляции в гидравлических системахКруговое перемещение машины Давление зажимаКласс точностиУровень чистотыКлиматическое сопротивлениеСигнал блокировкиКонтроль засорения отверстийСистема с замкнутым центромЗамкнутый контурСистема управления положением с замкнутым контуромЗамкнутый контур управленияЗамкнутый контурКонтроль с замкнутым циклом Индекс derCode translatorCodingCoil impedanceCold flowCollapse pressureCollective lineCombined actuationCombined pistonCompact sealComparabilityCompatibility для elastomersCompressibilityCompressibility factorCompression энергии EKCompression setCompression объема ΔVKComputer controlsComputerised числового программного управления (ЧПУ) ConcentratesConditions из comparisonCone valveConfigureConical pistonConstant (фиксированный) throttleConstant расхода соотношения gaugeContact давления systemConstant Контакта насос controlsContact systemConstant сила давления characteristicConstant т pContact sealsContamination classContamination в operationContamination Измерение Загрязнение гидравлической жидкости Непрерывно регулируемый клапан потока Непрерывно регулируемый клапан давления Непрерывно регулируемые клапаны Непрерывные рабочие условия Непрерывное давление Непрерывное значение Контроль Алгоритм управления Управляющий усилитель Блок управления (блок клапанов) Карта управления Управляющая характеристика Управляющая команда Управляющий компьютер Концепция управления в жидкости t технологияЦилиндр управления Отклонение управленияУстройства управленияСхема управленияРазница управленияГеометрия краев клапанов Управляющая электроникаОборудование управленияОшибка управленияРасход управленияРасход управленияКонтроль в диапазоне мощности Контролируемая подсистемаКонтроллерКонцепции контроллераКонтроллер для демпфирования (фильтр верхних частот) Входная переменная контроллера y Переменная на выходе RC-регулятора поток сигнала) Память управленияМотор управленияКолебания управленияПанель управленияПараметры управленияПластина управленияМощность управленияДавление управленияПрограмма управленияДиапазон управленияЭлектромагнитный клапан управленияПружины управленияСтруктура управленияКонтроль площади поверхностиПереключатель управленияТехнология управленияДроссельная заслонкаБлок управленияПеременная управленияГромкость управления для клапановКонтроль со сменным ПЗУКонтроль с дроссельной заслонкойКоулер Корректирующая скорость Корректирующая переменная Корректировка характеристик Стоимость гидравлической силовой установки Охлаждение встречным потоком Покрывающая пластина Ползучая подача (скорость) Медленное движениеПотеря давления, зависящая от поперечного сечения Система с питанием от тока Индикатор тока Фитинг с врезным кольцомЦикл Частота цикла Цилиндр Эффективность цилиндра

Закон Хагена-Пуазейля Половина разомкнутой гидравлической цепи Датчик эффекта холла Расстояние заклинивания dРучной насос Управление с проводкой (VPS) Твердость материалов для уплотненийТепловой баланс в гидравлических системах Жидкости HFB Жидкости под давлением HFC Жидкости HFDИерархическая схема управленияВысокочастотный фильтр (фильтр) Фильтр высокого давленияПропорциональный клапан с высоким крутящим моментом Высокоскоростные двигатели выпускной клапан motorsHigh жидкости на водной основе (HWBF) HL oilsHLPD oilsHLP oilsHolding currentHolding elementHole patternsHose assembliesHose lineHosesHose stretchingHumHVLP oilsHybrid accumulatorHydraulic accumulatorHydraulic actuationHydraulic axisHydraulic тормозной мощности cylinderHydraulic моста circuitHydraulic моста rectifierHydraulic С hHydraulic consumerHydraulic cylinderHydraulic демпфирования (серводвигателей) Гидравлический привод systemsHydraulic efficiencyHydraulic fluidsHydraulic половина bridgesHydraulic индуктивности L hHydraulic intensifierHydraulic motorHydraulic motors subject to secondary controlHydraulic piloting stageHydraulic p ower packHydraulic power packHydraulic pumpHydraulic resonance frequencyHydraulicsHydraulic sealsHydraulic shockHydraulic signal technologyHydraulic spring constantHydro-mechanical closed loop controlHydro-mechanical signal converterHydro-mechanical systemHydrokineticsHydromechanical efficiencyHydropneumatic accumulatorHydrostatic bearingHydrostatic driveHydrostatic energyHydrostatic lawsHydrostatic machinesHydrostatic power P hHydrostatic reliefHydrostatic resistanceHydrostaticsHydrostatic servo driveHydrostatic traction driveHydrostatic transmissionHydrostatic transmission with separated primary/secondaryHysteresis

O-ring sealOil-in-water emulsionOil coolerOil hydraulicsOil samplingOil separatorOn-off controlOn-stroke time of a pumpOnboard-ElektronikOne-way tripOpen-centre positionOpen-centre pump controlOpen centre systemOpen circuitOpen control circuitOpened control circuitOpening/closing pressure differenceOpening pressureOpen loopOpen loop control systemOpen loop synchronisation controlOperating characteristicsOperating conditionsOperating cycle frequencyOperating defectOperating life of a filterOperating loadsOperating manualOperating mode of a controlOperating modes of drivesOperating parametersOperating pointOperating pressureOperating safetyOperating systemOperating viscosityOperational amplifierOperation pressureOptical fibre technologyOptimising the controllerOrbit motorOrificeOscillationsOscilloscopeOutlet pressureOutput deviceOutput moduleOutput unitOutput volumeOver-excitationOverall control unitOverlap in valvesOverload protectionOverpressureOverrunOvershootOvershoot time 9000 3

Waiting periodWater glycol solutionWater hydraulicsWater in oilWater in oil emulsionWear protection capacityWelded nipple fittingWetting abilityWheel motorWordWord lengthWord processorWorking cycleWorking linesWorking positions

Labyrinth gap sealLabyrinth sealLaminar flowLaminar flow resistorLANLaplace transformationLarge signal rangeLaw of superpositionLeakage, leakLeakage compensationLeakage lineLifetimeLimiting conditionsLimit load controlLimit monitorLimit pick upLimit signalLimit switchLinearLinear control signalLinear control theoryLinearisationLinearityLinearity errorLinear motorLinear regulatorsLine filterLip sealLoad-holding valveLoad collectiveLoad flow Q LLoading models for cylindersLoad pressure compensationLoad pressure differenceLoad pressure feedbackLoad pressure p LLoad sensing systemLoad stiffnessLocking cylindersLogic controlLogic diagramLogic elementLoop gain V KLoop lineLosses in displacement machinesLow-pressure pumpLowering brake valveLow pass filterLow pressure

Naphta based oilNatural angular frequency ω eNatural angular frequency ω oNatural dampingNatural frequencyNatural frequency foNatural frequency of a hydraulic cylinderNBRNeedle-type throttleNegative-pulse controlNeutralisation numberNeutral positionNeutral position of the pumpNewtonian fluidNoiseNoise levelNoise level (A-weighted) L pANoise level additionNoise level L pNoise level L WNoise level WNoise measurementNominal flow rateNominal force of a cylinderNominal mode of operationNominal mode of operationNominal operating conditionsNominal powerNominal pressureNominal sizeNominal valve sizesNominal viscosityNominal widthNon-contact sealsNon-linear control systemNon-linearityNon-linear signal transmitterNormally closed (NC) valveNormally open valveNormal pressureNozzleNull-adjustment signalNull biasNull bias adjustmentNull driftNull range of a proportional spool valveNull shift stability

Value discreteValveValve-controlled pumpsValve actuationValve assembly systemsValve blockValve block designValve control spoolValve control with four edgesValve dynamicsValve efficiencyValve noisesValve operating characteristicsValve plate-controlled pumpsValve polarityValve pressure differenceValve sealsValve with flat sliderVane pumpVariable area principleVariable delivery flow (control)Variable pumpVariable pump, variable motorVariable throttleVelocity amplificationVelocity controlVelocity errorVelocity feedback control circuitVelocity feedback loopVelocity measurementVelocity of sound pressure wavesVertical column pressure gaugeVertical stacking assemblyVibration fatigue limit of a systemViscosityViscosityViscosity/pressure characteristicViscosity/temperature characteristicViscosity classesViscosity index (VI)Viscosity index correctorViscosity rangeVisual display of contaminationVoltage tolerance for solenoid valvesVolume (bulk) filtersVolumetric efficiencyVolumetric losses 9 0003

5-chamber valve5-way valve

Gap bridgingGap extrusionGap filterGap flowGap sealsGas filling pressureGauge protection valveGeared pump/motorGear pumpGear pump flow meterGerotor motorGraduated glass scaleGrooved ring sealGroup signal line

Kinematical viscosity vKv factor (speed/stroke gain)Kv value (of valves)

Quad-ringQuantisationQuantisation errorQuasistaticQuick connector couplingQuiescent flow

Zero overlap

Jet contractionJet pipe amplifier

why does no one use a hydraulic accumulator to speed up the hydro log splitter ?

It could be done, but there are a lot of design downsides.

Аккумуляторы 101 (или, может быть, 301)
Аккумуляторы в основном используются с регулируемыми насосами и системами постоянного давления, которым требуется высокий расход на очень небольших участках рабочего цикла. Для потребительского разделителя журналов стоимость и сложность убивают его. Намного дешевле и проще добавить мощность двигателя и насос большего размера.

-Пространство: Размеры аккумулятора — это общий объем, скажем, «5 галлонов». Количество масла, которое они выгружают, зависит от давления наддува газа, начального давления наддува от насоса и минимального давления, необходимого в конце нагнетательной части цикла.Большая часть цилиндра выдвигается за счет гидроаккумулятора, поскольку он заряжен до высокого давления. Цилиндр будет быстро расширяться без нагрузки, но внутреннее давление быстро упадет довольно низко, а затем, когда цилиндр ударит по нагрузке, давление будет расти медленнее, потому что часть потока насоса идет на перезарядку аккумулятора, поскольку он создает давление против нагрузки. Поскольку максимальное и минимальное давления настолько сильно различаются, потребуется довольно большой размер аккумулятора даже для небольшого объема слива масла.
Есть способы обойти это, чтобы использовать аккумулятор для быстрого продвижения, затем выпустить его из контура, пока насос перемещает нагрузку под высоким давлением, а затем снова поставить аккумулятор на насос для подзарядки во время простоя.
Было бы неплохо разместить гидроаккумулятор на стороне большого объема / низкого давления насоса, но для этого потребовался бы двухсекционный насос с внешней разгрузкой и обратными клапанами, а не обычный (и дешевый) двухступенчатый насос, встроенный в один блок. чугунного корпуса.
Тем не менее, средний потребитель не может поддерживать это.

Так же интуитивно, без расчетов, для системы, требующей, возможно, 3/4 галлона добавок, я бы ожидал, по крайней мере, 5 галлонов, может быть, 7-12 или 10.

-Стоимость: один только аккумулятор, вероятно, подойдет. превышает 500 долларов, плюс клапаны. Стальные оболочки на 3000 фунтов на квадратный дюйм размером 5 галлонов представляют собой стальные оболочки толщиной 1/4 дюйма примерно как баллон с кислородной горелкой.

— Время цикла не может улучшиться. В зависимости от того, когда в цикле аккумулятор разряжается, чтобы помочь цилиндру, и когда он перезаряжается и ограничивает поток, разделительная часть цикла может не улучшиться, а может даже ухудшиться.Общее время цикла, вероятно, не изменится, но какая часть цикла будет быстрой или медленной, зависит от конструкции схемы. Расширьте дело, не втягивайте его так сильно, как я тянусь за другим куском дерева.

-Время между циклами должно быть достаточно для подзарядки. Обычно я использую дрова в пространстве и как можно скорее приступаю к следующему продлению, чтобы не было времени на перезарядку.

-Повышенное тепловыделение и низкая энергоэффективность. В насосе с открытым центром и фиксированной шестеренкой давление изменяется в зависимости от нагрузки, поэтому система довольно эффективна.Когда аккумулятор заряжается при высоком давлении, а затем измеряется до низкого давления через клапаны, эта энергия направляется на тепло. В большинстве систем это тепло составляет небольшую часть рабочего цикла, но в этом приложении на нагрев будет уходить МНОГО энергии.

-Фиксированный насос означает фиксированную скорость цилиндра, и им легко управлять. С гидроаккумулятором он становится системой постоянного давления, и скорость цилиндра может сильно изменяться в зависимости от нагрузки. Может вылететь как катапульта в начале цикла, потому что аккумулятор был бы заряжен при высоком давлении.Аккумулятор должен быть перед регулирующим клапаном, а не на стороне цилиндра клапана. С фиксированным насосом мы обычно тянем рычаг клапана на полный ход, и цилиндр движется с известной максимальной скоростью. В схеме с аккумулятором мы должны либо осторожно сжимать рычаг с каждым циклом, либо добавлять клапан управления потоком. Оба этих варианта преобразуют энергию в тепло.

-Сложность. Насос с фиксированной шестеренкой, клапан и цилиндр — это примерно так же просто, как и гидравлический контур, но сколько вопросов «мой дровокол не работает» появляется? Представьте себе добавление гидроаккумулятора, предварительной заправки газа, разгрузки и настройки давления клапана последовательности и т. Д.к смеси вопросов.

Примечания, комментарии, не относящиеся к аккумулятору:
— Думаю, идея накопления энергии с маховиком имеет больший потенциал. Еще проще иметь двигатель побольше и помпу побольше, особенно с учетом количества часов, которые работает сплиттер в год.

— Цилиндр с большим штоком помогает только при втягивании. Скорость расширения такая же. Необходимо тщательно проверить поток, выходящий из закрытой стороны на втягивании, на предмет размеров линии и т. Д.

-Более крупная штанга может позволить использовать регенерацию в направлении выдвижения.(Регенерация не работает при втягивании.) Меньшие стержни восстанавливаются слишком быстро. Расширенная регенерация может значительно ускорить работу, но ТОЛЬКО во время ненагруженной части цикла. Это не помогает нагруженной части, когда цилиндр ударяет по нагрузке (если давление нагрузки действительно не очень низкое), ни в втянутой части. Итак, если ненагруженная часть цикла удлинения составляет всего несколько дюймов, значительное ускорение не поможет в общем времени.

Достаточно ….. тыс. Чел.

Что такое аккумулятор? | ESP International

Официальные документы на доске

ИНСТРУКТОР:

Мигель Вита, подразделение гидравлики Фройденберга

Щелкните изображение, чтобы открыть его в новой вкладке.

РАСШИФРОВКА ВИДЕО

Всем привет. Добро пожаловать в официальные документы на доске. Меня зовут Мигель Вита. Я работаю в Freudenberg в отделе гидроаккумуляторов. Сегодня меня пригласили наши партнеры ESP International, чтобы рассказать о гидроаккумуляторах.

Мы решили начать с основ:
Что такое аккумулятор?
Как использовать аккумулятор?
Какие различные технологии используются в аккумуляторе?

Что такое аккумулятор? Основной принцип.


Начнем с вопроса — «Что такое аккумулятор?» Представьте воздушный шар, вставленный в ведро, и приложите к нему силу. Вы увеличиваете давление в воздушной зоне воздушного шара. Это основной принцип работы аккумулятора.

У вас есть аккумулятор с жесткой оболочкой. Обычно из углеродистой стали — очень похоже на ведро, которое я вам показывал ранее, и у вас есть эластомерная диафрагма. Эта эластомерная диафрагма станет барьером для предварительно заряженной азотной секции.Вы можете сравнить предварительно заряженный азот с воздухом, который находится в вашем баллоне.

Порт подключен к гидравлической системе. К гидравлической системе мы приложим давление в этой части, и оно будет переведено на то же действие, что и у вас с этой Силой. Таким образом, когда у вас есть гидравлическая система, вы увеличиваете давление в азотной зоне.

Что происходит с гидравлической системой?


У нас есть схема гидравлической системы.

  • гидроцилиндр
  • клапанные насосы
  • танк

И мы добавили аккумулятор в систему.

Когда в гидравлической системе отсутствует давление, предварительная зарядка азота осуществляется через всю полость аккумулятора.

Например:
У вас есть лопата на тракторе, и она ударяется о камень. Здесь действует огромная сила, которая увеличивает давление во всей системе. Это масло под давлением переместится в аккумулятор и повысит давление азота.Таким образом, этот азот внутри аккумулятора будет работать как подушка. Вы увлажнили систему с помощью аккумулятора.

Основные функции аккумулятора

  1. Запуск с гашением пульсаций. В гидравлической системе у вас пульсация. Эта пульсация исходит в основном от гидравлических насосов. Таким образом, аккумулятор будет гасить эту пульсацию и стабилизировать вашу систему. Вы уменьшите шум, вы уменьшите вибрацию системы, и вы заставите систему работать с этим движением.
  2. Также гидроаккумулятор может поддерживать постоянное давление в вашей системе. Например, если у вас протечка, вы потеряете давление в системе. Аккумулятор стабилизирует давление, и вы будете поддерживать его на определенном уровне до тех пор, пока не сможете остановить систему для обслуживания.
  3. Еще одна функция аккумулятора — действительно быть аварийным источником энергии в вашей системе. Например, когда ваша система задействована на гидравлических тормозах, и вам нужно внезапное сброс давления в вашей системе, гидроаккумулятор поможет вам сбросить это давление всякий раз, когда это необходимо.

Три типа аккумуляторов

И вот мы подошли к трем различным типам аккумуляторов. У нас есть баллонные, диафрагменные и поршневые аккумуляторы.

1. МОЧЕВОЙ АККУМУЛЯТОР

Мочевой пузырь — это хлеб с маслом. Баллонные аккумуляторы можно использовать везде. В большинстве гидравлических систем используются баллонные гидроаккумуляторы.

  • У вас есть мочевой мешок.
  • Вы заправили азотом.
  • Подключен к гидравлической системе.

Эти аккумуляторы используются для гашения пульсаций там, где у вас высокая частота, особенно с небольшой амплитудой. Много приложений, правда? Но у этого типа гидроаккумулятора есть ограничение. Мочевой пузырь имеет вулканизированный шов, и это слабое место мочевой системы. Если у вас высокая частота и потребность в циклах, у вас может быть разрыв этого шва. Это ограничение данного типа гидроаккумулятора.

2.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *