Содержание

Реле давления насосной станции: принцип работы и регулировка

Чтобы сделать в небольшом частном доме автономную систему водоснабжения, будет достаточно обычного насоса, скважинного или поверхностного, с подходящими характеристиками производительности. Но для дома, в котором проживает больше 4 человек, или для 2-3 этажного жилища потребуется устанавливать насосную станцию. Это оборудование уже имеет заводские настройки давления, но иногда их необходимо корректировать. Когда требуется регулировка насосной станции, и как это делать, будет рассказано ниже.

Устройство насосной станции

Чтобы правильно отрегулировать данное насосное оборудование, необходимо иметь хотя бы минимальное представление о том, как оно устроено и по какому принципу работает. Главное предназначение насосных станций, состоящих из нескольких модулей – это обеспечение питьевой водой всех точек водозабора в доме. Также данным агрегатам под силу автоматически повышать и поддерживать давление в системе на необходимом уровне.

Ниже приведена схема насосной станции с гидроаккумулятором.

В состав насосной станции входят следующие элементы (см. рисунок выше).

  1. Гидроаккумулятор. Выполнен в виде герметичного бака, внутри которого находится эластичная мембрана. В некоторых емкостях вместо мембраны установлена резиновая груша. Благодаря мембране (груше) гидробак делится на 2 отсека: для воздуха и для воды. Последняя закачивается в грушу или в часть бака, предназначенную для жидкости. Подключение гидроаккумулятора происходит на отрезке между насосом и трубой, ведущей к точкам водозабора.
  2. Насос. Может быть поверхностным или скважинным. Тип насоса должен быть либо центробежным, либо вихревым. Вибрационный насос для станции использовать нельзя.
  3. Реле давления. Датчик давления автоматизирует весь процесс, при котором вода подается из скважины в расширительный бак. Реле отвечает за включение и выключение двигателя насоса при достижении в баке необходимой силы сжатия.
  4. Обратный клапан. Препятствует вытеканию жидкости из гидроаккумулятора при отключении насоса.
  5. Электропитание. Чтобы подключить оборудование к электрической сети, для него требуется протянуть отдельную проводку с сечением, соответствующим мощности агрегата. Также в электрической цепи должна быть установлена система защиты в виде автоматов.

Данное оборудование работает по следующему принципу. После открытия крана в точке водозабора вода из гидроаккумулятора начинает поступать в систему. Одновременно в баке происходит снижение сжатия. Когда сила сжатия снизится до величины, установленной на датчике, происходит замыкание его контактов, и двигатель насоса начинает работать. После прекращения потребления воды в точке водозабора, или при повышении силы сжатия в гидроаккумуляторе до необходимого уровня, происходит срабатывание реле на отключение насоса.

Реле давления насосной станции

Датчик в автоматическом порядке регулирует процесс откачки воды в системе.

Именно реле давления отвечает за включение и отключение насосного оборудования. Он же контролирует уровень напора воды. Встречаются механические и электронные элементы.

Механические реле

Устройства такого плана отличаются простой и вместе с тем надёжной конструкцией. Они гораздо реже выходят из строя, чем электронные аналоги, потому как в механических реле перегорать попросту нечему. Регулировка происходит посредством смены натяжения пружин.

Механическое реле давление регулируется натяжением пружин

Механическое реле включает в себя пластину из металла, где закреплена контактная группа. Здесь же находятся клеммы для подключения устройства и пружины для регулировки. Нижняя часть реле отведена под мембрану и поршень. Конструкция датчика достаточно проста, поэтому с самостоятельной разборкой и анализом повреждений серьёзных проблем возникнуть не должно.

Электронные реле

Подобные устройства привлекают в первую очередь удобством пользования и своей точностью. Шаг электронного реле заметно меньше, чем механического, а значит, вариантов регулировки здесь больше. Но электроника, в особенности бюджетная, часто ломается. Поэтому излишняя экономия в этом случае нецелесообразна.

Электронное реле давления воды

Ещё одно явное преимущество электронного реле – это защита техники от холостого хода. Когда напор воды в магистрали будет минимальным, элемент некоторое время будет продолжать работать. Такой подход позволяет защитить основные узлы станции. Отремонтировать электронное реле своими силами гораздо сложнее: кроме технических знаний необходим специфический инструмент. Поэтому диагностику и обслуживание датчика лучше предоставить профессионалам.

Характеристики устройства

В зависимости от модели станции и её типа устройство может располагаться как внутри корпуса, так и крепиться снаружи. То есть, если оборудование идёт без реле, или его функционал не устраивает пользователя, то всегда есть возможность подобрать элемент в отдельном порядке.

Датчики также различаются по максимально допустимому давлению. Добрая половина классических реле настроены на 1,5 атм для запуска системы и 2,5 атм на её деактивацию. Мощные бытовые модели имеют порог в 5 атм.

Когда речь идёт о внешнем элементе, то здесь крайне важно учесть характеристики насосной станции. Если оперировать слишком высоким давлением, то система может не выдержать, и как следствие появятся протечки, разрывы и скорый износ мембраны. Поэтому так важно отрегулировать реле именно с оглядкой на критичные показатели станции.

Особенности работы

Рассмотрим принцип работы устройства на примере одного из самых распространённых реле для насосных станций – РМ-5. В продаже также можно встретить зарубежные аналоги и более продвинутые решения. Подобные модели укомплектованы дополнительной защитой и предлагают расширенные функциональные возможности.

РМ-5 включает в себя подвижную металлическую основу и пару пружин с двух сторон. Мембрана в зависимости от давления двигает пластину. Посредством прижимного болта можно отрегулировать минимальные и максимальные показатели, при которых техника включается или отключается. РМ-5 оснащён

обратным клапаном, поэтому вода при деактивации насосной станции не сливается обратно в скважину или колодец.

На рынке также можно встретить заводские и любительские модификации РМ-5. Реле усиливают, дополняют какими-то защитными элементами и функционалом.

Поэтапный разбор работы датчика давления:

  1. По открытию крана вода начинает поступать из бака.
  2. По мере убывания жидкости в насосной станции давление постепенно снижается.
  3. Мембрана воздействует на поршень, а он в свою очередь замыкает контакты, включая технику.
  4. По закрытию крана бак наполняется водой.
  5. Как только показатель давления достигает максимальных значений, оборудование отключается.

От имеющихся установок зависит периодичность работы насоса: как часто он будет включаться и отключаться, а также уровень давления. Чем меньше промежуток между запуском и деактивацией оборудования, тем дольше прослужат основные узлы системы и вся техника в целом. Поэтому так важна грамотная регулировка реле давления.

Но на работу оборудования влияет не только датчик. Случается, что устройство настроено правильно, но другие элементы станции сводят на нет работу всей системы. К примеру, проблема может быть из-за неисправного двигателя или засора коммуникаций

. Поэтому к осмотру реле стоит подходить после диагностики основных элементов, особенно если речь идёт о механических датчиках. В доброй половине случаев для устранения проблем с разбросом давления достаточно почистить реле от скопившейся грязи: пружины, пластины и контактные группы.

Когда требуется регулировать реле

Как было сказано выше, реле автоматизирует процесс закачивания жидкости в систему водопровода и в расширительный бак. Чаще всего насосное оборудование, купленное в готовом виде, уже имеет базовые настройки реле

. Но возникают ситуации, когда требуется срочная регулировка давления насосной станции. Выполнять данные действия придется в случаях, если:

  • после запуска двигателя насоса, он сразу же отключается;
  • после отключения станции наблюдается слабый напор в системе;
  • при работе станции в гидробаке создается чрезмерная сила сжатия, о чем свидетельствуют показания манометра, но аппарат при этом не отключается;
  • не срабатывает реле давления, и насос не включается.

Чаше всего, если у агрегата появляются вышеперечисленные симптомы, то ремонт реле не требуется. Нужно всего лишь правильно настроить данный модуль.

Подготовка гидробака и его регулировка

Перед поступлением гидроаккумуляторов в продажу в них на заводе закачивают воздух под определенным давлением. Закачка воздуха происходит через золотник, установленный на данной емкости.

В среднем, давление в насосной станции должно быть таким: в гидробаках объемом до 150 л. — 1,5 бар, в расширительных баках от 200 до 500 л. — 2 бар.

Под каким давлением находится воздух в гидробаке, можно узнать из этикетки, приклеенной к нему. На следующем рисунке красной стрелкой указана строка, в которой обозначено давление воздуха в накопителе.

Также данные замеры силы сжатия в баке можно произвести, используя автомобильный манометр. Измерительный прибор подключается к золотнику бака.

Чтобы начать регулировать силу сжатия в гидробаке, необходимо его подготовить:

  1. Отключите оборудование от электросети.
  2. Откройте любой кран, установленный в системе, и дождитесь момента, когда жидкость перестанет течь из него. Конечно же, будет лучше, если кран будет находиться недалеко от накопителя или на одном этаже с ним.
  3. Далее, замерьте силу сжатия в емкости, используя манометр, и запомните это значение. Для накопителей небольших объемов показатель должен быть около 1,5 бар.

Чтобы правильно отрегулировать накопитель, следует учитывать правило: давление, вызывающее срабатывание реле на включение агрегата, должно превышать силу сжатия в накопителе на 10%. Например, реле насоса включает двигатель при 1,6 бар. Значит, необходимо создать и соответствующую силу сжатия воздуха в накопителе, а именно 1,4-1,5 бар. Кстати, совпадение с заводскими настройками здесь не случайно.

Если датчик настраивается для запуска двигателя станции при большем, чем 1,6 бар силе сжатия, то, соответственно, и настройки накопителя меняются. Увеличить давление в последнем, то есть накачать воздух, можно, если воспользоваться насосом для накачки автомобильных шин.

Совет! Коррекцию силы сжатия воздуха в накопителе рекомендуется проводить хотя бы 1 раз в год, поскольку за зиму она может снижаться на несколько десятых бар.

Настройка реле давления

Бывают случаи, когда настройки датчика по умолчанию не устраивают пользователей насосного оборудования. Например, если открыть кран на каком-либо этаже здания, то можно заметить, что напор воды в нем быстро снижается. Также установка некоторых систем, очищающих воду, невозможна, если сила сжатия в системе находится на уровне меньше 2,5 бар. Если станция настроена на включение при 1,6-1,8 бар, то фильтры в данном случае работать не будут.

Обычно настройка реле давления своими руками не вызывает затруднений и выполняется по следующему алгоритму.

  1. Запишите показатели манометра при включении и отключении агрегата.
  2. Выдерните шнур питания станции из розетки или отключите автоматы.
  3. Снимите крышку с датчика. Обычно она закреплена 1 шурупом. Под крышкой можно увидеть 2 винта с пружинами. Тот, что больше, отвечает за давление, при котором происходит запуск двигателя станции. Обычно возле него стоит маркировка в виде буквы “Р” и нарисованы стрелки с нанесенными возле них знаками “+” и “-”.
  4. Чтобы увеличить силу сжатия, вращайте гайку по направлению к знаку “+”. И наоборот, чтобы снизить ее, нужно крутить винт к знаку “-”. Сделайте один оборот гайки в требуемом направлении и запустите аппарат.
  5. Дождитесь, пока станция отключится. Если показания манометра вас не устраивают, то продолжайте вращать гайку и включать аппарат до тех пор, пока давление в накопителе не достигнет требуемого значения.
  6. На следующем этапе следует настроить момент выключения станции. Для этого предназначен винт меньшего размера с пружиной вокруг. Возле него находится маркировка “ΔP”, а также нарисованы стрелки со знаками “+” и “-”. Настройка регулятора давления на включение устройства проводится так же, как и на отключение аппарата.

В среднем, интервал между силой сжатия, при которой датчик включает двигатель станции, и значением силы сжатия, когда агрегат останавливается, находится в пределах 1-1,5 бар. При этом интервал может увеличиваться, если выключение будет происходить при больших значениях.

Например, агрегат имеет заводские настройки, при которых Рвкл = 1,6 бар, а Рвыкл = 2,6 бар. Из этого следует, что разница не выходит за пределы стандартного значения и равна 1 бар. Если требуется по каким-либо причинам увеличить Рвыкл до 4 бар, то следует увеличить и интервал до 1,5 бар. То есть, Рвкл должно быть около 2,5 бар.

Но при увеличении данного интервала увеличится и перепад давления в системе водоснабжения. Иногда это может вызывать дискомфорт, поскольку придется израсходовать большее количество воды из бака, чтобы станция включилась. Но благодаря большому интервалу между Рвкл и Рвыкл включение насоса будет происходить реже, что увеличит его ресурс.

Вышеописан

Давление в насосных станциях — для расширительного бачка – 1,7 Ат

Насосная станция – это агрегат, подающий воду в дома или на дачи в автономном режиме. Несмотря на то, что устроены подобные агрегаты довольно сложно, принцип работы их является достаточно простым – насос всасывает воду из источника и закачивает в специально предназначенный резервуар. В резервуаре установлен датчик, который контролирует уровень жидкости. Если уровень уменьшается, датчик подает сигнал и станция включается. В противном случае насосная станция должна отключиться.

Как выбрать насосную станцию?

Подбирая оптимальный вариант агрегата, стоит обратить внимание на следующие критерии:

  • В гидроаккумуляторе объем должен соответствовать заявленным требованиям.
  • Материал, из которого изготовлен корпус, должен быть крепким и надежным.
  • Мощность насоса должна обеспечить хороший напор воды в системе водоснабжения.

Из чего состоит насосная станция?



Важным элементом для нормального функционирования любой насосной станции является давление. Прежде чем узнать, какие существуют причины, влияющие на давление, стоит разобраться, из каких элементов состоит аппарат:

  • Насос.
  • Гидроаккумулятор.
  • Реле давления.
  • Манометр.

Регулировка давления насосной станции


Реле давления в агрегатах с насосами считается основной частью её нормального функционирования, то каждый владелец агрегата должен знать, как осуществляется настройка:

  • Обеспечить работающее состояние насоса и накачать воды до отметки в три атмосферы.
  • Выключить аппарат.
  • Снять крышку, и не спеша проворачивать гайку до тех пор, пока элемент не включится. Если совершать движения по ходу стрелки часов, то можно увеличить давление воздуха, против хода – уменьшить.
  • Открыть кран и уменьшить показания жидкости до отметки в 1,7 Атмосфер.
  • Перекрыть кран.
  • Снять крышку реле и крутить гайку до момента срабатывания контактов.

Какое давление должно быть в насосной станции в груше?



Гидроаккумулятор агрегата с насосом содержит в себе такой элемент, как резиновая емкость, которую еще принято называть груша. Между стенками бачка и самим резервуаром должен находиться воздух. Чем больше воды будет находиться груше, тем сильнее будет сжат воздух и, соответственно, больше будет его давление. И наоборот, если падает давление, значит, объем воды в резиновой емкости уменьшился. Так каким же должно быть значение оптимального давления для подобного агрегата? В большинстве случаев производители заявляют давление в 1,5 Атмосферы. Приобретая насосную станцию, необходимо проверить уровень давления манометром.

Не забывайте и о том, что разные манометры имеют разные погрешности. Поэтому лучше всего использовать поверенный автомобильный манометр с минимальными значениями градуировки шкалы на нем.

Какое давление должно быть в расширительном баке насосной станции?


Давление в ресивере не должно быть больше верхнего предела уровня давления жидкости. Иначе ресивер перестанет выполнять свою прямую обязанность, а именно, заполняться водой и смягчать гидроудары. Рекомендуемое уровень давления для расширительного бачка – 1,7 Атмосфер.

Почему падает давление в насосной станции?


Некоторые неисправности агрегата могут привести к тому, что в итоге насосная станция не включается при падении давления. Причинами того, что в водопроводе падает давление, может быть:
  1. Насос недостаточно мощный или его детали изношены.
  2. Происходит утечка воды через соединения или имеется разрыв трубы.
  3. Падает напряжение электрической сети.
  4. Всасывающая труба захватывает воздух.

Почему насосная станция не набирает давление и не отключается?


Основное предназначение подобных агрегатов – подавать жидкость из различных источников с большой глубиной, создавать и поддерживать постоянные показатели давления. Однако в процессе эксплуатации аппаратов имеют место различные неполадки. Случается и так, что агрегат не может нагнать нужное давление и выключается. Причинами этого могут стать:

  • Работа насоса «всухую». Происходит это вследствие падения водяного столба ниже уровня забора воды.
  • Увеличение сопротивления трубопровода, что возникает, если длина магистрали не соответствует диаметру.
  • Негерметичные соединения, вследствие чего наблюдается подсос воздуха. При этой проблеме стоит проверить все соединения и в случае необходимости обеспечить каждый из них герметиком.
  • Забит фильтр грубой очистки. Очистив фильтр, можно пробовать подавать давление в насосную станцию.
  • Сбой в работе реле давления. Решить проблему поможет регулировка реле.

Найдя причину неисправности насосной станции, можно приступать к её устранению.

Почему не поднимается давление в насосной станции?


Когда манометр насосной станции показывает низкое давление, и оно не поднимается, такой процесс еще принято называть завоздушиванием. Причинами такой проблемы могут быть:

  • Если это не погружной насос, то причина может скрываться во всасывающей трубке, через которую может всасываться нежелательный воздух. Справиться с проблемой поможет установка датчика «сухого хода».
  • Подающая магистраль негерметична вовсе нет плотности на стыках. Нужно проверить все стыки и обеспечить их полной герметизацией.
  • Наполняясь, в насосной установке остается воздух. Тут не обойтись без его выгонки, заполняя насос сверху под давлением.

Насосная станция не держит давление и постоянно включается


В связи с некоторыми неисправностями, давление в агрегате иногда падает, а сама станция может периодически включаться. Причиной может стать:
  • Разрыв резиновой емкости в гидроаккумуляторе, в результате чего бачок полностью заполняется водой даже там, где должен быть воздух. Именно этот элемент и регулирует постоянство давления станции. Обнаружить проблему можно, придавив штуцер закачки жидкости. Если же жидкость станет просачиваться, то проблема в резиновой емкости. Здесь лучше сразу прибегнуть к замене мембраны.
  • В гидроаккумуляторе не наблюдается давление воздуха. Решить проблему – это подкачать воздух в камеру, используя обычный прибор для закачивания воздуха.
  • Поломано реле. В случае, когда штуцер без подтеков, то проблема именно с реле. Если настройки не помогают, придется прибегнуть к замене прибора.

Как самостоятельно настроить давление в гидроаккумуляторе

Содержание статьи:

Гидроаккумулятор играет важную роль в системе водоснабжения. Он служит для поддержания постоянного напора, позволяет автоматизировать процесс подачи воды, предохраняет электродвигатель от преждевременного износа и поломки, защищает трубопроводы от гидроударов.

Одна из важнейших характеристик этого устройства – давление в ресивере, представляющем собой воздушную полость накопительного водяного бака, которая отделена от воды герметичной резиновой мембраной. При неправильной настройке напор в трубах при подаче воды начинает «скакать», происходят нежелательные частые срабатывания реле водяного насоса. В результате – невозможность нормальной эксплуатации водопровода и преждевременный выход из строя электрического гидронасоса.

Материал эластичной мембраны с течением времени деформируется, и давление в аккумулирующем баке может снизиться.

Для обеспечения нормальной работы водопровода рассчитывают оптимальную величину давления в аккумуляторе, осуществляют его правильную настройку и обеспечивают последующий контроль с периодичностью 1 – 2 раза в год.

Всё это можно делать самостоятельно, не имея под рукой каких-то особых инструментов и специальных навыков. Об этом – ниже.

При проведении профилактических работ не стоит забывать проверять систему на герметичность. При наличии невыявленных протечек усилия по настройке оборудования могут быть просто сведены на нет!

Почему нужно создавать давление в гидроаккумуляторе

Понижение давления ниже нормы приведёт к тому, что насосная станция будет слишком часто включаться. При значительном снижении давления запуск насоса происходит практически сразу после открывания водопроводного крана. Соответственно, при закрывании крана гидронасос почти мгновенно выключается. Помимо этого, частые циклы срабатывания реле ведут к выходу электронасоса из строя.

Оптимальные параметры

Основные факторы, от которых зависят работа водопроводной сети и срок службы гидрооборудования, следующие:

  1. Грамотный расчёт величин максимального и минимального давления, при которых должен включаться (выключаться) насос.
  2. Правильная регулировка давления в ресивере.

Давление предварительной закачки воздуха составляет 1,5 – 2 бар (в зависимости от объёма бака). Определение величины воздушного давления для работы в паре с конкретной насосной станцией производится исходя из заводских параметров реле давления. Среднее значение давления, при котором включается насос, составляет от 1,4 до 1,8 бар. Порог отключения обычно находится в диапазоне 2,5 – 3 бар. Оптимальная величина воздушного давления должна быть на 10-12% меньше давления включения насоса.

Пример расчета. Реле давления настроено на запуск насоса при давлении 2 бар. Давление воздуха в ресивере составляет 2-0,2=1,8 атм.

При соблюдении этих требований после выключения гидронасоса в аккумулирующем баке гарантированно сохраняется определённое количество воды, достаточное для создания стабильного напора до следующего запуска насоса.

Как проверить давление в гидроаккумуляторе

Во время измерений бак должен быт пустым. Для этого следует отключить насосную станцию, открыть водопроводный кран и дождаться момента, когда прекратится подача воды.

Для замера давления необходимо:

  • открутить колпачок, который закрывает штуцер с золотником, располагаемый на корпусе бака;
  • подключить манометр к золотнику (можно использовать электронный или автомобильный манометр), снять показание и сравнить с расчётным значением;
  • в случае снижения уровня давления осуществить подкачивание компрессором до оптимальной величины;
  • для уменьшения давления стравить воздух.

Если регулировка осуществляется до включения гидробака в систему, его необходимо оставить на сутки. По истечении этого времени после контрольного замера производят установку устройства.

Как отрегулировать давление

Правильную работу насосной станции определяют три основных параметра:

  1. Давление запуска;
  2. Давление отключения;
  3. Давление воздуха в гидробаке.

Первые два параметра определяют режим работы реле давления. Проводится регулировка опытным путем, при этом с целью повышения точности измерения проверка может выполняться несколько раз.

В составе электрического реле: две вертикально расположенные пружины. Они располагаются на осях и поджимаются гайками. Одна из пружин (большего диаметра) служит для настройки величины давления включения, пружина меньшего диаметра служит для регулирования требуемой разности между величинами давления запуска и давления отключения насоса. Пружины упираются в мембрану, которая замыкает и размыкает контакты управляющей цепи.

Настройка порога запуска осуществляется вращением регулировочной гайки. При повороте по часовой стрелке давление запуска насоса увеличивается. Вращение против часовой стрелки приводит к снижению давления включения.

Процесс регулировки осуществляется в следующей последовательности:

  1. Измерение давления воздуха в ресивере с помощью внешнего манометра (например, автомобильного), при необходимости – накачивание ручным насосом или компрессором до расчётной величины. Осуществляется при выключенном насосе после полного сброса давления.
  2. Замер давления включения насоса. При включённом, но неработающем насосе открыть кран для сброса давления и снять показание манометра системы в момент срабатывания реле (при запуске насосной станции).
  3. Регулировка давления запуска. При несовпадении полученной величины давления с требуемым гайку большой пружины повернуть в сторону увеличения или уменьшения. По завершении контрольного замера при необходимости повторить операцию (возможно, несколько раз).
  4. Измерение давления отключения насоса. Следует закрыть все сливные краны и дождаться момента отключения насоса .
  5. Регулировка разности уровней давлений запуска и отключения насоса. При несовпадении расчётного значения порога выключения насосной станции повернуть гайку пружины меньшего диаметра в соответствующем направлении. Пружина очень чувствительна: поворот осуществлять максимум на 1/4 – 1/2 оборота. Проведя контрольный замер, действия при необходимости повторить.
  6. Повторение цикла, описанного в пунктах 1 – 5. Процедуру при необходимости проделать несколько раз до достижения нужных параметров.

Требуемые параметры запуска и отключения указаны в паспорте реле. Рабочее давление воздуха в ресивере указано в паспорте аккумулятора. Оно должно быть на 10-12 % меньше значения давления запуска.

В зависимости от этажности здания и количества потребителей воды возникает необходимость изменения заводских параметров при проведении регулировки реле. После этого следует обязательно проверить давление воздуха и отрегулировать его в соответствии с новыми настройками.

Стоит отметить, что описанная технология контроля и настройки параметров аккумулятора одинакова для всех видов этого изделия, независимо от конфигурации (вертикального или горизонтального исполнения), объёма и конструктивных особенностей. Сказанное справедливо также к системам отопления и горячего водjснабжения.

Не обязательно быть специалистом, чтобы, имея минимум простых инструментов, провести несложные операции по проверке и регулировке давления в гидроаккумуляторе. Простые действия, не требующие каких-либо навыков, займут минимум времени, при этом окупятся надёжной бесперебойной работой водопровода в течение долгого времени.

Как отрегулировать давление в насосной станции

Для того, чтобы обеспечить себе комфортное существование, люди, проживающие в частных домах, иногда приобретают насосы для улучшения напора воды.

Компания grundfos каталог насосов предлагает достаточно обширный, все модели доказали свою высокую работоспособность и качество.

Но даже на лучших изделиях через время заводские настройки уровня давления сбиваются, и наступает необходимость самостоятельно настраивать насос.

Целесообразней изучить информацию о том, как это делать, до того как возникнет необходимость применять знания на практике.

Реле давления

Давление воды в насосной станции регулируется предназначенным для этого реле. При изготовлении насоса значения нижнего и верхнего предела давления уже заданы.

Регулировка настроек

Периодически возникают причины, по которым необходимо менять заводские установки. Для этого нужно:

  • обесточить насос;
  • с реле убрать пластмассовую крышку;
  • изменить уровень верхнего предела давления, повернув маленькую гайку;
  • для изменения нижнего уровня давления нужно повернуть большую гайку.

Частота включения и отключения насоса зависит от объёма бака гидроаккумулятора и от разницы значений давления. Нужно помнить о том, что показания верхнего давления должны быть не выше, чем те, на которые рассчитана насосная станция.

Выставление определённых значений

Бывают ситуации, когда необходимо задать точные значения давления, например, максимальное давление 2,5 атмосферы, а минимальное – 1,5 атмосферы.

Этот процесс выглядит следующим образом:

  • Подключить насос. Заполнять водой бак до тех пор, пока стрелка на манометре не установится на значении 2,5 атмосферы.
  • Выключить насос.
  • Убрать крышку реле и поворачивать маленькую гайку до начала работы реле.
  • Вылить воду из бака до установления стрелки манометра на 1,5 атмосферы.
  • Закрыть кран.
  • Убрать крышку реле и не спеша поворачивать большую гайку до тех пор, пока не сработают контакты.

Технические нюансы

После регулировки давления в насосной станции нужно изменить и данные его в баке гидроаккумулятора.
Нельзя сильно закручивать гайки на реле, иначе оно в скором времени может выйти из строя.
Наибольшее устанавливаемое вами значение давления не должно превышать 4/5 от максимального давления насоса, указанного в паспорте. Иначе это может привести к его быстрому износу.

Для того, чтобы насос включался реже, необходимо, чтобы в баке было много воды. Это достигается путём установки маленького значения для включения насоса и большого значения для выключения.

Как настроить реле давления на насосной станции:

Источник №1: http://geonasos.ru/

Твитнуть

Настройка реле давления насосной станции

Реле давления является важной составной частью насосной станции, и имеет простой механизм отключения и включения контактов электрического двигателя.Настройка реле давления насосной станции осуществляется с помощью двух болтов, которые находятся под защитной, как правило пластмассовой крышкой.При покупке насосной станции, реле регулирования давления в системе входит в комплект и уже отрегулировано оптимальным образом.Но как правило в процессе эксплуатации возникают случаи различных неполадок в работе, когда реле работает не так как прежде и ее просто необходимо отрегулировать по новому. Принцип работы реле давления следующий: при достижения давления в системе заданного максимального значения, как правило это 2.5 — 3.0 Бар, реле отключает электродвигатель.

Но, при необходимости можно назначить и более высокие значения давления скажем 4 или 5 Бар. Для удобности максимальное назначенное число давления в системе при котором реле отключает электродвигатель называют давление отключения или верхнее давление. Когда давление в системе, при отключенном электродвигателе упало до нижнего заданного предела(как правило 1.5-1.8 Бар), реле давления включает электродвигатель.Назначенное число  давления в системе при котором реле включает электродвигатель называют давлением включения или нижнее давление.

Читай далее на http://stroivagon.ru  клапан обратный для воды

Определение давления в расширительном бачке

Настройка реле давления насосной станции можно осуществить своими силами.

Для этого вначале необходимо проверить давление воздуха в пустом расширительном баке насосной станции.

Расширительный бак насосной станции состоит из двух частей :

Фото-1.Грушевидная резиновая диафрагма

Диафрагма из пищевого каучука насосной станции

В такой диафрагме  следует накачать воздух до достижения оптимального давления в 1.4-1.9 Бар .

Фото-2.Корпус расширительного  бачка насосной станции.

В корпусе расширительного бачка насосной станции встроен специальный клапан (нипель) с помощью которого можно накачать воздух в расширительный бак или на оборот уменьшить давление.

Фото-3.Измерение давления в пустом расширительном баке.

Манометр -инструмент для измерения давления

Давление в расширительном баке насосной станции без воды, измеряется с помощью  манометра, который используется для измерения давления в шинах автомобиля.Воздух в пустом расширительном баке качают с помощью автомобильного насоса.

При этом необходимо учитывать что для расширительных бачков объемом от 20 до 25 литров давление должно быть в пределах 1.4-1.7 Бар. Для расширительных бачков объемом по больше,скажем 50 — 100 литров,давление должно составлять 1.7-1.9 Бар.

В процессе эксплуатации насоса необходимо всегда (рекомендуется хотя бы 1 раз в месяц),проверить давление воздуха в расширительном баке и поддерживать давление гидрофора в рекомендуемых значениях.

Это позволит избежать преждевременный выход из строя резиновой диафрагмы расширительного бака насосной станции.
Во время проверки обязательно выключите вилку питания насоса из розетки для избежания поражения электрическим током.

Ре

Накачать хранилище | Сделай математику

Если мы примем солнечную и ветровую энергию в качестве основных компонентов нашей энергетической инфраструктуры, поскольку мы откажемся от ископаемого топлива, мы должны решить проблему накопления энергии в широком масштабе. Более ранняя публикация продемонстрировала, что у нас, вероятно, недостаточно материалов в мире, чтобы просто построить гигантские свинцово-кислотные (или на никелевой, или на литиевой) основе для выполнения этой работы. В комментариях часто указывалось, что гидроаккумулятор является гораздо более разумным ответом. Действительно, гидроаккумулятор в настоящее время является доминирующим — и почти единственным — решением для хранения в масштабе сети.Здесь мы взглянем на гидроаккумулятор и оценим, что он может для нас сделать.

Основы гравитационного хранения

Когда вы поднимаете объект, вы должны приложить силу для противодействия гравитации (вес объекта) и приложить эту силу к высоте , на которую вы поднимаете объект. Вес объекта и, следовательно, сила, приложенная для его подъема, — это его масса, умноженная на ускорение свободного падения (применение Ньютона F = мА ; в данном случае мг , где г — это ускорение свободного падения, или около 10 м / с²).Работа определяется как сила, умноженная на расстояние, поэтому подъем объекта массой м на высоту ч приводит к затратам энергии (работы) в размере мг / ч . Это называется гравитационной потенциальной энергией .

Это называется потенциальной энергией, потому что можно положить вложенную энергию на полку — буквально, фактически — чтобы получить к ней доступ позже. Упавший кирпич, которому ранее была придана гравитационная потенциальная энергия, может выполнять полезную работу, например, забивать гвоздь в кусок дерева (огромная сила, умноженная на небольшое расстояние = та же работа).Накопленная энергия не теряет ни на йоту со временем: в этом смысле она представляет собой идеальное долгосрочное хранилище.

Идея гидроаккумулятора с насосом состоит в том, что мы можем закачивать массу воды в резервуар (шельф), а затем извлекать эту энергию по желанию, исключая потери на испарение. Насосы и турбины (на самом деле часто реализованные как один и тот же физический блок) могут иметь КПД примерно 90%, поэтому хранение в оба конца обходится весьма скромно.

Концепция водохранилища Raccoon Mountain.

Основная проблема с гравитационным накоплением заключается в том, что оно на невероятно на слабее по сравнению с химическими методами, сжатым воздухом или маховиком (см. Сообщение о вариантах домашнего накопления энергии). Например, чтобы получить количество энергии, хранящейся в одной батарее AA, нам нужно поднять 100 кг (220 фунтов) на 10 м (33 фута), чтобы соответствовать этому. Чтобы соответствовать энергии, содержащейся в галлоне бензина, нам нужно было бы поднять 13 тонн воды (3500 галлонов) на высоту одного километра (3280 футов). Понятно, что плотность энергии гравитационного накопителя сильно снижена.

То, что нам не хватает плотности энергии, мы восполняем в объеме. Например, озера за плотинами представляют собой значительные запасы воды.

Мощность потока

Когда вода выходит со дна плотины, она несет энергию, как если бы она была «поставлена» на поверхность озера за плотиной. Как вода на дне «знает», насколько высока поверхность озера? Давление, которое пропорционально весу воды наверху. Итак, возьмем кубический метр воды массой 1000 кг и пропустим его через турбину.Энергия мг / ч в кубе воды для плотины высотой 100 м составляет (1000 кг) (10 м / с²) (100 м) = 10 6 Дж, или один мегаджоуль.

Если через эту плотину высотой 100 м будет проходить только один кубический метр в секунду, она будет производить 1 МДж / сек или 1 МВт. Я игнорирую примерно 90% -ный КПД гидроэлектрических турбин, чтобы цифры были аккуратными и приблизительными. Чаще расход измеряется в диапазоне 1000 м3 / с, так что наша 100-метровая плотина будет производить 1 ГВт в этом масштабе.

Итак, рецепт для понимания плотины гидроэлектростанции прост: умножьте высоту воды за плотиной (в метрах) на десятитысячный расход в кубических метрах в секунду, чтобы получить мощность в ваттах.

Нам нужно Сколько места для хранения ?

В США энергетическая диета составляет около 3 × 10 12 Вт, или 3 ТВт. Две трети из них используются в тепловых двигателях (электростанциях, автомобилях и т. Д.) Со средней эффективностью 30%, обеспечивая при этом 0,6 ТВт полезной работы. Другой 1 ТВт — это прямое тепло (в основном это тепло промышленных процессов) и электроэнергия от ядерных и гидроэнергетических источников. Представив, что мы заменяем наши тепловые двигатели на электричество и электрифицированный транспорт, нам нужно что-то около 2 ТВт общей мощности, учитывая некоторую неэффективность.Если вас устраивает половина этого, хорошо — коэффициент в два качественно не изменит гигантский масштаб проблемы.

Следующий вопрос: на сколько нам нужно нашего хранилища? В статье Nation Sized Battery я утверждал, что нам нужно 7 дней хранения, чтобы он был невидим для конечного пользователя. То есть, если американцы настаивают на том, чтобы не менять свои привычки и иметь ноль перебоев в работе хранилища в десятилетнем масштабе (читайте о полном отключении Сан-Диего в результате недавнего отключения электроэнергии в масштабах округа), то 7 дней — это наверное недалеко от цели.У меня есть зенитки за этот выбор, но я использую его здесь снова, потому что A) это не так уж и необоснованно, B) он позволяет проводить параллельное сравнение с национальным расчетом батареи и C) вы увидите, что это не делает или сломайте корпус: даже один день хранения — это очень сложно. Разделите все мои цифры на шкале на 7, например, если хотите, чтобы я использовал один день хранения.

Обратите внимание, что 7 дней хранения буквально не означают, что мы готовы испытать 7 дней с нулевым потреблением от возобновляемой инфраструктуры.Например, работа на 30% от величины безубыточности в течение 10 дней также оставляет систему с 7-дневным дефицитом энергии. Это обстоятельство нетрудно представить: на юго-западе пасмурная зимняя неделя, а скорость ветра над страной вдвое меньше среднего значения (то есть в восемь раз меньше мощности) за тот же период.

Таким образом, 2 ТВт за 7 дней означают 336 миллиардов кВтч емкости хранения.

Гидравлическая насосная установка First-Blush

В каком масштабе потребуется этот объем хранилища, если мы построим схему гидроаккумуляции? Немедленно отметим, что у нас есть 78 ГВт установленной гидроэлектроэнергии в США.С., Что составляет 4% от целевой потребности в 2 ТВт. Наши традиционные гидроэнергетические мощности не могли быть увеличены даже в два раза, поскольку основные участки реки уже были вырваны.

А как насчет потенциальных насосных гидроустановок: не на текущих реках, а в горах, где мы могли бы отгородить высокую долину и заполнить ее водой?

Я говорю о горах, потому что нам нужен значительный перепад высот для гидроаккумуляции, чтобы иметь смысл. Насосных хранилищ на равнинах не будет.Горизонтальное расстояние также должно быть минимизировано, поэтому нам нужен резкий рельеф, то есть горы.

В первом приближении мы можем представить горы в виде комков. У них есть заостренные вершины, которые указывают вверх. Они явно не очень чашеобразные. Возможно, перевернутые миски. Однако они действительно часто образуют впадины (в некоторых частях «крики»), окруженные рукавами / хребтами горы. Заграждение входа в полость позволяет нам заполнить эту бесполезную пустоту водой. Пикам и суркам можно просто научиться плавать! Нам также понадобится еще один равный по объему водоем внизу, чтобы уловить воду в цикле хранения.

Я не могу сказать, что изучал топографию наших земель, чтобы увидеть, сколько мест можно увидеть в этих грандиозных инженерных чудесах. Я могу не обращать внимания на широко распространенное существование естественных чаш, расположенных на краях обрывов. Как бы то ни было, 22 ГВт гидроаккумулирующих мощностей, которые мы использовали в настоящее время от до , предположительно выбрали первичные точки. Вместо того, чтобы возиться с топографическими картами, я использую простую «полую» модель, основанную на моем пребывании в горах и изучении рельефных карт.

В любом случае, давайте не будем позволять этим деталям мешать нам заниматься математикой! Скажем, наша средняя кандидатная впадина допускает наличие стены высотой 500 м (1650 футов) с одного конца и другой стены на несколько сотен метров ниже для нижнего резервуара (впадина здесь шире — возможно, к настоящему времени даже долина — так что тот же объем занимает меньшую глубину и большую площадь).

Простая модель для заполнения котловины водой на высоту, h.

Моя модель для пустоты будет иметь V-образный профиль со сторонами с уклоном 20% и полом с уклоном 10%.Таким образом, стена плотины высотой 500 м имеет наверху 5 км в поперечнике, а озеро тянется треугольником на 5 км. При такой геометрии создается резервуар объемом 2 кубических километра. Учитывая сужающуюся форму, запасенная гравитационная потенциальная энергия составляет 2 миллиарда кВтч. Нам просто нужно построить 170 таких вещей. Не говоря уже о том, что мы никогда не строили стены таких размеров. Или тот факт, что крупнейшее гидроаккумулирующее предприятие на сегодняшний день хранит 0,034 миллиарда кВтч — в 60 раз меньше мощности.

Но давайте продолжим играть в игру: если мы действительно потребовали 2 ТВт энергии от примерно 170 гидроаккумулирующих станций, мы говорим о 12 ГВт производственной мощности каждой.Это значительно больше, чем самая большая гидроэлектростанция в США (Гранд-Кули, 6,8 ГВт). Раз 170.

Возможно, я был слишком амбициозен, начав с плотины высотой 500 м. Большее количество резервуаров меньшего размера позволит использовать более разумные электростанции и, возможно, позволит избежать превращения семи чудес света в 177 чудес света (с большим количеством резервов).

Энергия, запасенная в полых стенах, как высота резервуара, в четвертой степени ! Так что если мы опустимся на высоту 250 м (все еще впечатляет, будучи выше плотины Гувера), нам потребуется в 16 раз больше установок (более 2500), каждая мощностью 600 МВт.Что касается масштаба, то в настоящее время у нас есть 24 гидроэлектростанции в США мощностью> 600 МВт.

Плотина Гувера: высота 221 м; Мощность 2,0 ГВт; 2,5 миллиона кубометров бетона.

Я думаю, что на этом этапе вы можете понять, почему придираться к необходимости 1 ТВт вместо 2 ТВт или требовать 2 дня хранения против 7 дней, не решит проблему трудной проблемы. Даже выполнение 1% требований, которые я изложил, было бы супер-впечатляющим.

Все это бетон!

Для этих стен плотины потребуется много бетона.Обследование строительства плотины показывает, что толщина основания составляет примерно 65–90% высоты плотины. Выбранная на 75% и сужающаяся к выступу, наша предыдущая геометрия требует объема бетона на 25% больше, чем ч ³, где ч — высота плотины. Для нашей 250-метровой плотины нам нужно 19 миллионов кубометров бетона каждая. Тогда каждая плотина содержит столько же бетона, сколько существует в плотинах Трех ущелий и Гранд-Кули вместе взятых! А это версия наших плотин « малая ».А нам их нужно более 2500. Я просто говорю.

При затратах на энергию 2,5 ГДж на тонну бетона и плотности 2,4 тонны на кубический метр нам в конечном итоге потребуется 32 миллиарда кВтч энергии на плотину, а всего 90 триллионов кВтч. Это более чем в 250 раз превышает количество энергии, удерживаемой плотинами, и представляет собой три года из общих энергетических потребностей США сегодня.

Обратите внимание, что я полностью игнорирую требования к нижнему резервуару.

Просторная комната для катания на водных лыжах

Теперь я хочу понять, как это выглядит по сравнению с нашим ландшафтом.Какую площадь займут все эти озера?

В модели высотой плотины 500 м площадь верхнего водоема составляет 12,5 квадратных километров. Водохранилища Times 170 — это 2125 квадратных километров. В 250-метровой модели у нас есть 3 квадратных километра на резервуар, или 8500 км² для всего набора. Таким образом, общая необходимая площадь масштабируется как обратный квадрат характерной высоты плотины.

Нам также нужно добавить область для нижнего резервуара. Поскольку местность, вероятно, имеет меньший уклон ниже вниз, предположим, что площадь поверхности нижнего водохранилища вдвое больше, чем верхнего водохранилища, так что теперь у нас есть около 25000 км² в районе нового озера (оба водохранилища не заполнены сразу, но эта земля негде построить торговый центр).

Получаем площадь равную 160 км по стороне. Это та же территория, что и озеро Эри (и больше, чем его объем). Добавьте на карту место еще одного Великого озера. Нетривиальное дело. Я еще не спрашивал, где мы берем воду для этого предприятия. Хорошо, что нехватка воды на этой планете не вызывает беспокойства.

Стоит также сравнить с площадью фотоэлектрической системы, обеспечивающей 2 ТВт средней мощности. Для такой производительности потребуется 10 ТВт установленной мощности (с учетом дня / ночи, угла наклона солнца, погоды).При 15% эффективности и 1 кВт / м² падающей пиковой солнечной энергии нам потребуется около 65 000 квадратных километров панелей — примерно сопоставимые масштабы. Имейте в виду, что акватория основана на более чем 2500 гигантских плотинах высотой 250 м, каждая из которых выше плотины Гувера и содержит в 8 раз больше бетона. Для небольших, более реалистичных проектов площадь воды может легко превышать площадь солнечной панели. Преобразование земли в гидроаккумулятор оказывает на окружающую среду на гораздо более более сильное воздействие, чем преобразование в солнечную ферму, поэтому проблемы хранения доминируют.Ветер забирает значительно больше земли (примерно в 50 раз), чем солнечный, поэтому водохранилища не смогут конкурировать с территорией, предназначенной для ветряных электростанций.

Варианты и масштабирование

Мы опирались на множество предположений в нашем исследовании потенциала для гидроаккумуляции. Легко потерять из виду выбор и влияние, которое он оказывает. Важен ли уклон в 20% по бокам? Как все зависит от высоты плотины?

В общем анализе получается, что количество необходимых плотин пропорционально общему запасу энергии, умноженному на боковой уклон котловины (в%, т.е.g.) умноженный на уклон пустотелого пола, деленный на высоту плотины в четвертой степени. Но что интересно, общий объем (и, следовательно, энергия), необходимый для бетона, зависит только от уклона полого перекрытия, деленного на высоту плотины.

В результате одна 500-метровая плотина заменяет 16 250-метровых плотин, забирая только половину общего количества бетона. Таким образом, масштабирование отдает предпочтение крупным проектам изящным. Конечно, количество приемлемых сайтов для мегапроектов может быть слишком маленьким, в то время как необходимость найти в 16 раз больше меньших площадок — это не прогулка по парку.

Общая площадь озера масштабируется как величина, обратная величине бокового откоса и квадрату высоты плотины. Так что, естественно, более широкие и мелководные озера будут более заметны из космоса. Общий необходимый объем воды просто равен обратной высоте плотин.

Конечно, любая реальная реализация будет иметь широкий диапазон высот плотины в наборе. Я отношусь ко всем как к одному, чтобы установить исходные цифры. Строгие средние не работают из-за нелинейных масштабов, но это, по крайней мере, дает нам представление.Анализ, в котором я допустил распределение высот плотин, просто зря потратил бы мое и ваше время.

Распространенный трюк — построить большую подающую трубу от нижней части верхней дамбы к турбине / насосу, расположенной намного ниже. Это будет непросто сделать везде, но дополнительный перепад на 500 м улучшает 250-метровую плотину в 3,6 раза, а плотину 500 м — в 2,3 раза. Это сокращает количество таких проектов, необходимых во столько же раз (все еще большое количество). Но не слишком увлекайтесь этим вариантом: нам еще нужно место, чтобы поставить нижний резервуар.Если вы откажетесь от слишком большой высоты, у вас закончатся естественные стены и вертикальный рельеф, что потребует очень большой затопленной площади, чтобы поймать воду.

Сравнение с реальными примерами

Гидроаккумулятор

Лудингтон: 110 метров; 1,87 ГВт; 15 часов; 27 миллионов кВтч.

Хватит дурачиться. Давайте сравним эту сказочную страну с чем-то реальным. У нас в США гидроаккумулирующих хранилищ на 22 ГВт, что составляет около 1% от моей цели в 2 ТВт. Но они, как правило, спринтеры, а не марафонцы (обычно около 12 часов работы при полной загрузке), поэтому фактическое хранилище не соответствует тому, что нам нужно, примерно в 1500 раз.Думаете, нам нужен всего один день хранения? Тем не менее множитель 200 выкл.

Самая крупная гидроаккумулирующая установка в США (с точки зрения энергии, а не мощности) находится в Раккун-Маунтин в Теннесси. Этому учреждению я во многом обязан своим комфортом с кондиционированием воздуха в детстве. Расположенный на вершине горы, водохранилище разгружается в реку Теннесси на 300 м ниже (технически водохранилище Никаджек). Установленная мощность составляет 1,532 ГВт, что подразумевает расход 575 м³ / с. Верхний резервуар обеспечивает необычно долгие 22 часа работы, так что объем полезной воды составляет 45 × 10 6 м³, а объем накопленной энергии составляет 34 миллиона кВтч.Площадь озера составляет 2,16 квадратных километров, а средняя глубина — 21 метр. (Земляная) плотина имеет высоту 70 м и длину 1800 м, на основании чего я рассчитываю, что объем плотины составляет около 10 6 м³ — примерно половину от плотины Гувера.

Енот-гора: 302 м; 1,53 ГВт; 22 часа; 34 млн кВтч.

Что эти реальных чисел могут сказать мне о моей упрощенной геометрии и предположениях, которые были сделаны? Основное отличие состоит в том, что геометрия Raccoon Mountain имеет гораздо более пологие уклоны: примерно 3–5% вверх по «лощине» и примерно 8% вверх по бокам.Нам потребуется 10 000 Раккун-Маунтин, чтобы удовлетворить мою базовую энергетическую мощность, хотя мы могли бы уменьшить мощность на единицу. Это становится 50 000, если вы не можете использовать уловку сброса в резервуар, расположенный далеко внизу. Для 10000 копий Енотовидной горы общая площадь озера (включая площадь озера внизу) примерно в три раза больше озера Эри (размер озера Верхнее). Объем плотины составляет примерно одну пятую того, что было у нас раньше, и становится сопоставимым в той степени, в которой не используется трюк с глубоким падением.Общий объем секвестрированной воды сопоставим для двух случаев (потому что это всего мг / ч , и наша базовая линия была ч = 250 м, в то время как гора Раккун использует ч = 300 м).

Изменение назначения гидроэнергетической инфраструктуры

Если в какой-то момент в этом развитии вы подумали: «Погодите-ка: зачем строить все эти гигантские плотины в горах, когда у нас уже есть большие озера и плотины, а вода уже доставляется до порога ?!» значит, вы не одиноки: я тоже задавался вопросом.

Первое примечание: наша установленная мощность гидроэлектростанций в США составляет 78 ГВт; в 25 раз меньше необходимой полной мощности.

Следующее примечание: расход воды не всегда доступен для реализации установленной мощности. Например, гидроэлектростанции США производят около 270 миллиардов кВтч ежегодно, что составляет всего 40% от того, что было бы произведено, если бы все плотины работали на 100% круглый год. Например, на плотине Гувера ежегодно производится 4 единицы.2 миллиарда кВтч, что составляет 23% от установленной мощности 2,08 ГВт, которая может быть произведена за год. Даже могучая Колумбия колеблется настолько, что плотина Гранд-Кули реализует только 35% своей мощности.

Эти моменты важны, потому что для достижения необходимой выходной мощности в 2 ТВт нам нужно умножить гидроэлектрическую мощность , расход на коэффициент 25, или на коэффициент 60 больше, чем средний расход. Мы можем предсказать несколько проблем с эрозией здесь и там.

Все равно сделаем!

Давайте не будем слабаками.Давайте просто нарастим наши гидроэлектрические мощности на разрабатываемых объектах и ​​спросим, ​​достаточно ли у нас накопителей энергии за плотинами. Один из способов взглянуть на это — выяснить, сколько электроэнергии было бы произведено, если бы все озера, запруженные за гидроэлектростанциями, опустились на один метр за 24 часа. Вычисление этого для каждой плотины на основе площади поверхности каждого озера дает в общей сложности 170 ГВт мощности. Нам нужно больше, чем это. Только наша потребность в электроэнергии в этой стране составляет в среднем 450 ГВт, и, конечно же, мы стремимся к этому примерно в четыре раза, чтобы покрыть все наши потребности в энергии.

В результате для получения достаточного количества энергии из существующей инфраструктуры потребуется осушать каждый резервуар чуть более чем на 10 метров в день. Но по мере того, как озера стекают, площадь поверхности сокращается, так что моя десятиметровая оценка слишком занижена. Кроме того, многие плотины выйдут из строя, как только мы выйдем за пределы 10-метрового диапазона, и тот факт, что поставляемая энергия падает с падением высоты воды, еще больше снижает пропускную способность. Используя объем, указанный за каждой плотиной, я обнаружил, что осушение всех водохранилищ за 7-дневный период дает мощность 500 ГВт.Конечно, плотины часто строятся последовательно вдоль реки, поэтому мы можем повторно использовать воду по пути. Это даст нам несколько множителей и приблизит нас к нашим потребностям.

Но давайте не будем забывать, что наша схема здесь предполагает опорожнение всех озер и рек от воды, причем со скоростью, намного превышающей то, что каналы привыкли нести. Это экстремальный маневр.

Осушите Великие озера

Пока мы «развлекаемся», давайте посмотрим, что мы можем извлечь из Великих озер. Все четыре верхних озера находятся на одной и той же высоте (6-метровый перепад от Верхнего до Эри), а между Эри и Онтарио перепад составляет 99 метров.Мы называем этот водопад Ниагрским водопадом, хотя только половина водопада проходит через сам водопад.

Если бы мы осушили по одному метру из каждого верхнего озера, мы получили бы 54 миллиарда кВтч энергии: примерно шестую часть запланированной мощности. Если проводить в течение семи дней, поток составит 375 000 кубических метров в секунду, что в 125 раз превышает нормальный поток через водопад. Теперь я заплачу, чтобы увидеть это! Но сначала я хотел бы в последний раз посетить каждый город на берегу реки Святого Лаврентия.

Если бы мы попытались уловить воду в озере Онтарио, чтобы уберечь тех, кто ниже по течению от гнева, ее уровень поднялся бы на 12 метров (39 футов).Остерегайтесь Торонто и Рочестера!

Труба, по которой эта вода подается к турбинам, должна быть более 125 метров в диаметре (или 160 трубок диаметром 10 метров каждая), чтобы ограничить скорость воды по трубам / турбинам ниже скоростей автострады! Как весело.

Я сошел с ума?

Почему я всегда так делаю: выбираю задачу и показываю, как нелепо решать проблему монолитно? Может быть Я тот, кто смешон!

Эта тенденция является отражением моего стремления понять, как мы можем столкнуться с огромными энергетическими проблемами впереди.Первым шагом всегда является оценка потенциальных решения относительно полномасштабного спроса. Если он протирает пол с избыточной емкостью, тогда отлично: это, несомненно, простое решение. Если это не так, то это тоже очень информативно.

Да, разнообразный портфель из полдюжины неадекватных решений может добавить к адекватному решению. Но полдюжины ужасно неадекватных решений не могут осуществить тот же трюк. Пока что мои поиски продолжают выявлять ужасно неадекватный тип.Масштаб замены ископаемого топлива настолько устрашающий, что , что мы очень быстро попадаем в затруднительное положение, когда приводим цифры к предлагаемым решениям.

Распространенной реакцией на сообщение Nation Sized Battery, особенно на форуме Oil Drum Forum, было то, что я был глуп, рассматривая полномасштабную свинцово-кислотную батарею, и что перекачиваемое накопление было более очевидным решением проблемы. Для меня это было неочевидно, но я еще не сделал математических расчетов. Тот факт, что только одна из рассматриваемых здесь «малых» плотин имеет столько же бетона, сколько плотины Три ущелья и Гранд-Кули вместе взятые, унизительно.Я был бы впечатлен, если бы мы его сделали. Я был бы изумлен, если бы мы заработали 25. И это просто дает нам 1% от нашей потребности (или 7%, если вы все еще ощетиниваетесь при 7-дневной батарее).

Достаточно ясно, что гидроаккумулятор существует и достаточно хорошо работает в определенных местах. Но демонстрация не подразумевает масштабируемости, и масштабирование существующих установок не дало принципиально другого ответа (фактически, требовалось еще установок на ). Огромная шкала, которую я рассчитываю, означает, что простые множители два или даже десять здесь и там не меняют общей окраски вывода.

Давайте проясним, что я не утверждаю, что крупномасштабное хранилище на нужном нам уровне невозможно . Но это намного сложнее, чем кто-либо думает. Когда придет время, дело не в том, чтобы просто «наращивать». Мы легко можем оказаться плохо подготовленными и страдать от недостатка энергоресурсов, перебоев в работе и длительного, медленного экономического спада, потому что мы коллективно не предвидели масштаб предстоящих проблем.

Благодарность: Томас Ту внес вклад в исследование гидроэлектростанций, консолидации мощности, высоты и факторов пропускной способности для плотин, а также площадей и объемов запруженных озер.

Что такое канализационная насосная станция?

Как работают канализационные системы

Канализационная система представляет собой сеть труб, по которым сточные воды из дома и с предприятий попадают в главную канализацию. Обычно сеть трубопроводов зависит от силы тяжести, чтобы отходы стекали в основную канализацию.

Однако в низинных районах, где основной канализационный коллектор находится на более высоком уровне, чем трубы бытовой канализации, сточные воды необходимо транспортировать в основную канализацию другим способом.Здесь и появляются канализационные насосные станции.

Что такое канализационная насосная станция и как она работает?

Насосная станция состоит из большого резервуара, известного как мокрый колодец, который действует как приемник сточных вод из здания или группы зданий. Сточные воды из индивидуальных домов попадают в колодец.

Сточные воды будут оставаться в колодце, пока не достигнут заданного уровня. Как только он достигнет этого уровня, включится насос, чтобы нагнетать сточные воды так, чтобы они вышли из мокрого колодца вверх по холму до точки, где он входит в основной коллектор, или чтобы затем он мог перемещаться в основной коллектор под действием силы тяжести. .

На рисунке показан дом с нормальной гравитационной системой сточных труб.

Когда вам нужна насосная станция?

  • Когда стоимость земляных работ по пропуску сточных вод самотеком превышает стоимость насосной станции для сточных вод.
  • Когда канализационная линия пересекает гребень.
  • Если цокольный этаж слишком низкий, чтобы сточные воды могли стекать самотеком.
  • Где гравитационная система не построена.

Преимущества канализационной насосной станции

  • Насосная станция обеспечивает удобство при установке канализационной системы и может снизить стоимость строительства.
  • Насосные станции оснащены системами удаленного мониторинга, которые позволяют операторам оставаться в курсе.
  • Сточные воды перекачиваются автоматически без контакта с человеком, что исключает риск проблем со здоровьем.
  • Доступны насосы различных размеров для бытового и коммерческого применения.
  • Забор насосов часто бывает широким, чтобы предотвратить засорение.
  • Канализационные насосные системы оснащены сигнализацией, предупреждающей вас о проблемах с системой.Это сводит к минимуму риск переполнения сточных вод, поскольку вас быстро предупреждают.

Недостатки канализационной насосной станции

  • Проектирование и установка должны выполняться профессионально, чтобы система была надежной и соответствовала своему назначению. Это требование опыта означает, что это может быть дорогостоящим.
  • Хотя насосные системы обычно не потребляют много энергии, электричество по-прежнему дорого обходится из-за использования гравитационной системы.
  • Может быть сложно найти запасные части для вашего насоса.Этого можно избежать, заключив контракт на техническое обслуживание с Pumping Solutions.
  • Накопление жира и жира может снизить надежность.
  • Хотя насосы выбраны таким образом, чтобы минимизировать риск засорения, все же существует вероятность засорения.
Дом с канализационной насосной станцией.

Большинство недостатков, таких как засорение, скопление жира и проблемы с деталями, можно устранить, обратившись к вашей компании, производящей насос. Когда вы работаете с нами в Pumping Solutions, мы уделяем время тому, чтобы понять принцип использования вашей насосной станции для сточных вод, прежде чем давать рекомендации.Это означает, что мы можем принять меры для борьбы с такими потенциальными проблемами, как накопление жира и закупорка.

Для получения дополнительной информации о насосных станциях для сточных вод или для организации опроса свяжитесь с командой Pumping Solutions. Мы воспользуемся нашим многолетним опытом, чтобы предоставить вам интуитивно понятные решения для решения ваших проблем с очисткой воды и сточных вод.

Считаете эту статью полезной? Найдите больше подобных сообщений в нашем блоге или посетите нашу страницу услуг, чтобы узнать, чем мы можем вам помочь!

Свяжитесь с насосными решениями

7 способов накачать грудь

Среди лифтеров не так много людей, которые будут уклоняться от желания построить сильную точеную грудь.В конце концов, они знают, что чудовищные грудные мышцы кричат ​​о силе и мощи и прекрасно смотрятся на пляже.

Функционально сильные грудные мышцы также помогают при выполнении повседневных задач, снижают риск травм плеча и обеспечивают дополнительное преимущество в спорте и в тренажерном зале. Проще говоря, хорошо сложенная грудь — это пектакулярная. Сожалею.

Пришло время вывести тренировку груди из колеи. Используйте и поделитесь этими советами, чтобы пересмотреть свой распорядок грудной клетки и проложить себе путь к успеху.

1

Придерживайтесь основ

Когда игра сундуков начинает давать сбои, некоторые люди реагируют на них, прибегая к нелепо звучащей вспомогательной работе, например, к одной руке с обратным укладыванием верха. Здесь не нужно изобретать велосипед; секретных упражнений нет.

Совершенствуйте свою технику и форму и определите наилучший диапазон повторений для вашей цели. Основы помогут вашей груди расти!

Проверенные на практике базовые упражнения, такие как старый жим лежа, жим гантелей, жим на наклонной скамье и разгибание груди, на протяжении многих лет помогали ведущим лифтерам, таким как Стив Ривз, Арнольд, и множеству других людей.Так почему бы им не работать на вас?

Прежде чем пытаться что-то изменить, убедитесь, что вы освоили эти движения. Совершенствуйте свою технику и форму и определите диапазон повторений, который лучше всего подходит для вашей цели. Ведь любое конструктивно прочное здание должно подниматься на прочный фундамент.

Такие упражнения, как жим лежа, являются краеугольным камнем для мощной груди. Все еще сомнительно? Взгляните на IFBB Physique Pro Крейга Каперсо, который использует эти упражнения для создания своей твердой груди.

2

Тренировать сундук должен каждый

Ага, в том числе и вы, дамы.К сожалению, некоторым женщинам нужно отказаться от этих ложных предвзятых представлений о том, как упражнения на грудь могут негативно повлиять на их бюст. Нет, они не уменьшат ваш бюст. Нет, они не сделают тебя похожей на Женщину-Халка. Так что хватит беспокоиться из-за этих необоснованных опасений!

Несмотря на опасения потерять размер груди, и мужчинам, и женщинам следует регулярно тренировать грудь.

Если и есть кто-то, у кого есть и сильный , и красивый сундук , то это WBFF Pro Jen Jewell. Джен знает важность дня груди и любит включать в тренировку груди как можно больше различных движений, включая жимы, разгибания и вариации отжиманий.

«То, что [женщины], возможно, не стараются накачать самые большие грудные мышцы, не означает, что мы должны пренебрегать тренировкой груди», — говорит она. «Наша грудь — это основная группа мышц. Мы не будем пренебрегать тренировкой спины, так зачем нам пропускать день груди?»

Это как у тех парней, которые тренируют только верхнюю часть тела, а в конце концов используют палочки для еды вместо ног. Здесь повторяется та же концепция дисбаланса: проработка одной группы мышц, игнорирование другой группы может заставить вас выглядеть (и функционировать) непропорционально.

Джен продолжает: «Если мы пренебрегаем тренировкой груди, это может привести к мышечному дисбалансу в нашем телосложении и повлиять на наши тренировки со всех сторон — у нас этого не может быть, теперь можем ?! Когда мы прорабатываем грудь, наши плечи. и трицепсы тоже задействованы. И, дамы, есть еще один бонус! Даже если вы не можете увеличить размер груди с помощью тренировок, вы можете напрячь мышцы груди, что делает линию груди еще более упругой «.

3

Сжать

Что выжимать, спросите вы? Ну вот и твоя проблема.

Во время жима вы должны сжать две вещи: рукоятку штанги и мышцы груди. Когда я говорю «сжимайте грудные мышцы», я не имею в виду, что на самом деле сжимайте их руками. В концентрической или подъемной части повторений подумайте о сокращении грудных мышц. Сжатие увеличивает накачку и объем работы, а также увеличивает плотность мышц. Это будет непросто, но ваши упорные усилия будут вознаграждены.

Сжатие штанги хватом увеличивает накачку и задействованную работу, а также увеличивает плотность мышц.

Также убедитесь, что вы сжимаете штангу или ручку гантели, как будто хотите раздавить ее в ладони. Это сжатие привлечет больше волокон в группу накачки, что приведет к увеличению силы в будущем.

4

В центре внимания форма

Правильная подъемная форма превосходит все остальное. Если ваша форма сжимается, не имеет значения, что вы набираете удвоенный вес.

Если предполагаемые мышечные волокна задействованы неправильно, другие группы мышц могут доминировать в упражнении, что увеличивает ненужную нагрузку на группы мышц, не предназначенные для выдерживания больших нагрузок.Вот как тебе больно. Никто не создает сильную грудь, сидя на физиотерапии или имея дело с травмами спины или плеча. Показательные результаты в жиме могут произвести впечатление на товарищей в вашем тренажерном зале, но это не лучшая долгосрочная стратегия, если эти цифры достигаются за счет хорошей формы.

Выполнение правильной формы, выполнение повторений в более медленном темпе и сосредоточение внимания на использовании груди во время движения максимизируют интенсивность и эффективность тренировки, сводя к минимуму риск травм.

5

Толкай себя

Ваше тело — удивительная интеллектуальная машина, которая быстро адаптируется к стрессу. Если не надавить на него достаточно сильно, он не вырастет. Это так просто.

В то время как правильная форма по-прежнему правит днем, рост мышц требует прогрессивно увеличивающихся стимулов. Это увеличение приводит к разрушению мышечных волокон и восстановлению более сильных и крупных, подготавливая вас к следующему разу, когда вы столкнетесь с железом.

Подлет гантели

По мере того, как вы становитесь более комфортно выполнять движения в пределах определенного диапазона веса, заставляйте себя брать больше веса — пока ваша форма остается плотной.

6

Отдых, пауза, падение

Если увеличение веса больше не является сложной задачей, есть еще один способ сделать вашу следующую тренировку груди настоящим праздником. Я называю это методом «отдых, пауза, падение» — сокращенно RPD — и нет, это не новая танцевальная программа.

Я объединил две техники повышения интенсивности: отдых-пауза и дроп-сеты. Первый разбивает один набор на несколько подмножеств с кратким отдыхом, объединяющим весь набор. Последний метод позволяет вам продолжить упражнение с меньшим весом после того, как ваши мышцы разогнаны при более тяжелом весе. Моя методика отдыха, паузы, падения, применяемая к тренировке груди, обеспечивает абсолютную жестокость в наращивании мышц и предназначена для тренировки всех видов мышечных волокон одновременно.

Остальное

Начните с веса, который вы можете сделать, сделав 6-8 повторений, и дойдите до отказа (используйте корректировщик).Отдохните 5 секунд, а затем попробуйте еще пару секунд.

Пауза

Уменьшить вес на 20-25 процентов. Повторите то, что вы только что сделали, включая паузу отдыха, в течение 5 секунд.

Падение

Снова уменьшите вес — на ту же величину, что и в прошлый раз — и повторите набор паузы отдыха еще раз.

Окончательный результат — сет из 25-30 повторений. Новички могут сделать один подход в конце тренировки груди, но я не рекомендую больше этого. Опытные лифтеры могут включать этот набор RPD в каждое упражнение в следующий понедельник.(В понедельник все еще делают сундук, верно?)

7

Пыль с упадка

Вы знаете эту скамейку для падения? Наклонный зверь, собравший толстый слой пыли из-за недостаточного использования? Что ж, этот недооцененный угол может быть огромным благом для вашей груди. Это одобрено силачем Колтоном Леонардом, который кое-что знает о сильных грудных мышцах.

Сравнивая упражнения, выполняемые на плоской скамье и на скамье на наклонной скамье, некоторые исследования показали, что во время спада задействуется больше мышечных волокон в грудной клетке.Попробуйте это сделать как со штангой, так и с гантелями.

Испытайте эти советы и поделитесь своими результатами со мной и остальными в комментариях ниже!

Что такое насосные станции? (с иллюстрациями)

Насосные станции — это здания или места, в которых находятся насосы или другое оборудование, предназначенное для перемещения воды и других жидкостей из одного места в другое. Насосные станции иногда называют подъемными. Конкретный тип оборудования, установленного на конкретной насосной станции, будет зависеть от его точной функции и от типа жидкости, которую требуется перекачивать.Могут потребоваться другие насосы, например, на насосной станции сточных вод, которая работает с илом и навозом, по сравнению с водяной насосной станцией.

Иногда необходимы насосы для перекачивания густых сточных вод по трубопроводам.

Насосные станции обычно выполняют специализированную функцию.Многие насосные станции образуют важные структурные части общественной системы водоснабжения, обычно служащие для перекачки воды из резервуара в систему труб. Некоторые насосные станции транспортируют бытовой ил, жидкие промышленные отходы или сельскохозяйственный навоз. Другие применения насосных станций включают управление водоснабжением каналов, перекачку воды на гору в некоторых типах гидроэлектрических систем, обеспечение орошения сельскохозяйственных угодий и отвод воды с низменных земель.

Водоснабжение каналов может осуществляться насосными станциями.

Насосы, которые используются на этих станциях, бывают двух основных типов. Это ротодинамические насосы и насосы прямого вытеснения, и они классифицируются на основе механизма, который они используют для перемещения жидкостей. Ротодинамические насосы работают, добавляя давление к столбу жидкости, чтобы увеличить скорость, с которой жидкость движется по трубе.

Роторный насос использует ротор для приложения давления к жидкости. Эти насосы часто называют центробежными насосами, и их можно использовать в насосных станциях для сточных вод, поскольку они позволяют перекачивать густые шламы. Центробежные насосы также часто используются на водонасосных станциях, обеспечивающих водой сельскохозяйственные оросительные системы.

Насосы прямого вытеснения работают путем принудительного перемещения некоторого количества жидкости из впускной трубы в выпускную трубу. Эти насосы обычно производят постоянный поток. Как таковые, эти насосы часто являются частью оборудования стандартной водяной насосной станции, обеспечивающей поток для коммунального водоснабжения.

Современные насосные станции часто контролируются и обслуживаются с помощью компьютера, который называется диспетчером насосных станций. Преимущество этих компьютеров заключается в том, что насосная станция может работать непрерывно, без необходимости постоянно находиться у персонала в любое время дня и ночи. Компьютеры диспетчера насосной станции обычно имеют удобный интерфейс, который позволяет нетехническому персоналу управлять станцией.Эти компьютеры обычно контролируют многие важные переменные, которые влияют на успешную работу насосных станций, такие как давление жидкости и скорость потока.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *