Содержание

Расчет теплого пола: водяного, электрического, таблицы, примеры

Подогрев пола — удивительно комфортная вещь. Понимаешь это побывав в доме с таким отоплением и невольно задумываешься о том, а не сделать ли себе. Чтобы принять решение, да и выбрать способ подогрева, нужно прикинуть объем работ, материалов и стоимость всей затеи. Поможет в этом расчет теплого пола. Это только часть всего что надо. Ведь нужны будут еще термостаты, датчики температуры, в водяном полу — коллекторы и расходомеры. 

Содержание статьи

Теплый или комфортный пол

Сразу стоит разобраться в терминологии и в назначении подогрева пола. Могут быть две ситуации:

Это разделение неофициальное, но так будет проще понять, какой именно подход вам выбрать при расчете и проектировании. А подходы разные, так как требования отличаются.

Теплопотери что это и где их взять

Расчет теплого пола делают по каждому помещению, в котором он будет уложен. Основан он на том, что вы знаете теплопотери дома в целом и в каждом помещении конкретно.

Теплопотери — это то количество тепла, которое требуется возместить, чтобы поддерживать определенную/желаемую температуру. Теплопотери зависят от толщины и материала стен, от типа окон/дверей, от того как сделан пол, отапливаемое внизу помещение или нет, какой потолок, чердак, как это все утеплено. В общем, критериев масса. Учитывается все это в теплотехническом расчете.

Количество тепла для поддержания нужной температуры очень зависит от материала наружных стен и утепления

Теплотехнический расчет можно сделать самостоятельно (есть достаточное количество калькуляторов, методик), можно заказать в строительной организации. Для примерных прикидок можно воспользоваться усредненными нормами. Так считают, что для отопления одного квадратного метра в Средней полосе России требуется 100 Вт на квадратный метр площади. Это при условии, что утепление — среднее, высота потолков — 2,2-2,7 м, наружных стен не более чем две.

Примерные теплопотери для разных технологий строительства

Если утепление ниже среднего или потолки выше, регион более северный — эти показатели приводят к увеличению теплопотерь. Соответственно, наоборот, чем менее суровые зимы и лучше утепление, тем меньше требуется тепла. Подкорректировав таким образом норму, можно сделать более-менее точный расчет теплого пола, но всегда лучше взять с запасом — чтобы не мерзнуть.

Расчет водяного теплого пола

Водяной теплый пол — это трубы, уложенные в конструкции пола, по которым бежит теплоноситель. Это сложная система с большим количеством материалов и узлов. Обустройство водяного теплого пола — длительная и дорогостоящая затея. Но, в процессе эксплуатации, тепло обходится дешевле. По этим причинам водяной подогрев пола, обычно, делают в качестве основного или дополнительного источника тепла. Слишком много возни и затрат «только ради комфорта», но бывают и такие варианты. Водяной комфортный пол делают в процессе капитального ремонта или строительства.  В таком случае слишком большой разницы нет.

Расчет водяного теплого пола проводят по каждой комнате

Методика расчета водяного пола как основного источника тепла

При планировании теплого пола стоит заранее определиться с тем, где будут стоять крупные предметы мебели. Делать подогрев под шкафом или диваном не слишком разумно. К тому же это может повредить мебели. Определив зоны без подогрева, высчитываем «площадь рабочей поверхности» теплого пола. Этот тот участок, на котором будут укладываться трубы. В случае с водяным полом этим можно пренебречь, так как перегрев пола ни к чему не приведет. Если вы знаете, что теплопотери большие, то разумнее за «рабочую» принимать всю площадь. Так как метраж трубы получится большим, а ее надо как-то уложить.

Наиболее популярные схемы укладки труб водяного теплого пола. Оптимальный — улитка

Далее расчет теплого пола водяного типа такой:

  1. Выясняем какую температуру будем поддерживать в помещении.
  2. Находим теплопотери помещения.
  3. Делим теплопотери на «рабочую» поверхность. Получаем сколько тепла должны получать с квадратного метра площади теплого пола.

В принципе, уже тут можно подбирать диаметр трубы теплого пола, разрабатывать схему и шаг укладки труб, рассчитывать режимы работы котельного оборудования.

Но стоит еще учесть тип напольного покрытия. Каждое покрытие «отбирает» часть тепла. Какие-то больше (ламинат, линолеум), какие-то меньше (плитка). Соответственно, требуется учесть и эти теплопотери.

Максимальная температура пола в зависимости от назначения помещения

При расчетах надо будет определить температуру пола. Она не должна превышать нормы. Они регламентированы СНиПом. Выдержка приведена в таблице. Указаны максимально допустимые значения. Можно, конечно, и больше — если вы теплолюбивы, но закладывают более высокие значения редко. Если при расчетах оказывается, что температура пола слишком высока, надо либо уменьшать срочно теплопотери, либо устанавливать дополнительные источники тепла. Так расчет теплого пола помогает оптимально организовать отопление.

Пример расчета и подбора параметров водяного теплого пола

Пусть надо сделать подогрев пола в помещении площадью 18,2 квадратных метров (в таблице это помещение под номером 8) и теплопотерями 1,37 кВт. Для начала рассчитываем сколько тепла должен давать квадратный метр подогреваемого пола. Переводим К Вт в ватты. Для этого умножаем цифру на 1000. Получаем 1370 Вт. Теперь делим на площадь комнаты (или отапливаемой части, если они отличаются). В нашем случае 1370 Вт / 18,2 м² = 75 Вт/м².  То есть, нам надо получать 75 Вт тепла с каждого квадратного метра.

Пример расчета теплопотерь по помещениям

Идем на сайт выбранного производителя труб для теплого пола и смотрим, какие трубы вам подходят. Найти эти данные не так просто, так как зависит от толщины стяжки и рабочих температур теплоносителя. Исходя из этого считают теплоотдачу одного квадратного метра. Для простоты можно воспользоваться готовыми данными, сведенными в таблице. Например, для PE-X трубы диаметром 16 мм и толщиной стенки 2 мм.

В спальне нам нужна температура пола около 26°C, будет уложен ламинат. Теперь смотрим в таблице соответствующий столбик. Видим, что обеспечить такой режим можно только с шагом укладки трубы 100 мм и температуре подачи и обратки 50 и 40°C.

С таким шагом при схеме укладки змейкой на один квадратный метр уйдет 9 метров трубы. А на всю площадь потребуется 9 м*18,2 = 163,8 метра трубы. Это очень длинный контур. Придется на одну комнату делать несколько контуров, а это дополнительные расходы на оборудование (гребенка, смесительные клапана, термостаты и т.д.). «Нормальной» считается длина одного контура 60-70 метров. Так что придется делать 2 контура.

Расчет трубы PE-X диаметром 16 мм и толщиной стенки 2 мм для теплого пола

Есть еще несколько вариантов. Первый — использовать трубу большего диаметра. 20 мм или 22-24 мм. Тогда можно будет уменьшить шаг укладки, сократить расход трубы и сделать  меньшее количество контуров. Второй — сделать стяжку теплого пола с повышенной теплопроводностью. Для этого в раствор добавляют специальные добавки.

Если использовать «средние показатели»

На основании работы многих полов с водяным подогревом, опытным путем выведены «средние показатели»  для различных напольных покрытий.

Так известно, что используя трубу 16 мм в диаметре, с шагом 250 мм, со слоем ЦСП 30 мм над поверхностью трубы можно получить такое количество тепла:

  • 50-65 Вт с квадрата если напольное покрытие керамическая плитка.
  • 25-35 Вт с квадратного метра если использован ламинат.
  • 35-45 Вт для линолеума, предназначенного под укладку на теплый пол.
Это коллекторы (гребенка) теплого пола с подключенными к ним трубами. Параметры труб определяет расчет теплого пола, а затем их через коллекторы подключают к котлу

Если использовать эти данные расчет теплого пола вообще простой. Берете квадратуру комнаты, умножаете на количество тепла, которое можно «снять» с квадрата. Если цифра больше либо равна теплопотерям, значит можно делать так *шаг 250 мм, труба 16 мм, ЦСП толщиной 30 мм над трубой. Если полученное значение меньше, можно проблему решить следующими способами:

  • Добавить другой тип отопления.
  • Взять большего диаметра трубу.
  • Уменьшить шаг укладки трубы.
  • Улучшить теплопроводность стяжки.
  • Улучшить теплоизоляцию.

В принципе, можно применить один из вариантов, можно несколько. Самый здравый — улучшить теплоизоляцию, но сделать это далеко не просто, не быстро и далеко не дешево. Но это вложение позволит сэкономить на счетах за отопление, так что в длительной перспективе это самый разумный выход.

Как рассчитать как рассчитать мощность теплого пола для комфорта

Если теплый пол лишь для комфорта, особенно заботиться о его мощности нет необходимости. Надо исходить из комфортной температуры пола.

Средние температуры пола для разных покрытий, которые люди считают комфортными

Вообще для создания комфортной температуры шаг укладки трубы теплого пола берут 250 мм (межосевое расстояние). Выбирают любую схему укладки. Важно сделать пол без явно выраженных перепадов температур. Это достигается, если над трубой слой стяжки будет порядка 30-35 мм. Можно и больше, прогрев будет равномернее, но система будет более инерционной (дольше будет греться и остывать). Вообще, система водяного подогрева пола очень гибкая. Одну задачу можно решить несколькими способами. Важно найти оптимальное решение.

Как рассчитать электрический теплый пол

Методика расчета аналогична тому, что написано про водяной пол. Необходимо знать теплопотери и способ использования подогрева пола, мощность одного метра греющего элемента. В данном случае все несколько проще, потому что электрические материалы для нагрева пола имеют конкретную цифру, которой производители обозначают максимальную теплоотдачу. Больше заявленной цифры они выдать не в состоянии. Потому расчет теплого пола с электрическим подогревом более прост и понятен. Тем не менее, остается достаточное количество переменных величин. Это толщина стяжки, ее теплопроводность, теплопроводность финишного напольного покрытия. Их тоже надо учитывать.

Расчет зависит от мощности обогревателя на квадратный метр

Эффективная площадь обогрева

Расчет теплого пола с электроподогревом начинают с определения эффективной зоны обогрева и ее площади. Большая часть нагревательных элементов не переносит перегрева (резистивные кабели, маты из резистивных кабелей, пленочные нагреватели и инфракрасные маты). Исключение — саморегулирующиеся греющие кабели, но они стоят дорого, поэтому их применяют редко. Хотя, есть и сами кабели и маты из них.

Еще раз: электрические греющие элементы пола укладывают только на той площади, где не будет стоять мебель и/или сантехника, лежать ковры и т.д. То есть, электрический теплый пол кладут там, где будет постоянный и определенный расход тепла.

Чтобы рассчитать кабель для теплого пола надо сначала определиться с площадью, на которой он будет укладываться

Перед началом расчета предполагаемые места под мебель/сантехнику/ковры очерчиваем, считаем оставшуюся площадь. Это и будет эффективная площадь обогрева. Ее дальше используем в расчетах.

Как рассчитать метраж греющего кабеля для пола

Методика расчета основывается на том количестве тепла, которое надо восполнить (теплопотери) и эффективной площади отопления. Теплопотери делим на эффективную площадь обогрева. Получаем требуемую тепловую мощность, которую мы должны получить с квадратного метра площади с уложенным нагревательным элементом.

Например, площадь комнаты 16 квадратов, на 4 квадратах будет располагаться мебель. Обогреваемая зона — 16 кв. м — 4 кв. м = 12 кв. м. Теплопотери помещения — 1100 Вт. Узнаем сколько надо мощности с одного метра: 1100 Вт / 12 м² = 92 Вт/м².

Расчет греющего кабеля по площади помещения и мощности метра

Далее смотрим мощность кабелей для обогрева пола. Например, мощность одного метра — 30 Вт. Чтобы получить 92 Вт на квадратном метре, надо уложить чуть больше чем три метра кабеля. Вполне реальная задача. При разработке схемы, помните, что лучше, чтобы для стяжки высотой 3-4 см расстояние между проводами не превышало 25 см. Иначе пол будет иметь ярко выраженные «полосы» — чередующиеся зоны тепла и холода.

Есть и другой способ. Купить готовый набор кабеля определенной мощности. Ищите подходящую мощность и площадь укладки. Имеете все в комплекте.

Расчет теплого пола с кабельными матами

Суть расчета не изменяется. Также нужны теплопотери и эффективная площадь укладки. Это тот же кабель, но предварительно закрепленный на полимерной сетке. Такой обогревательный элемент проще в укладке. Применяется чаще всего под плитку. Просто раскатывается на подготовленное основание, сверху кладется плитка на специальный клей.

Греющие маты продаются обычно в готовом к укладке виде

С полом такого типа все просто. Он продается кусками определенной мощности на определенную площадь. Всего-то и надо, что найти тот вариант, который вам подходит.

Рассчитаем пленочный теплый пол

Пленочный нагревательный элемент продают комплектами и на метры. Подбираете метраж и мощность так, чтобы он давал требуемое количество тепла. Полотнища пленки должны укладываться вплотную друг к другу. Это необходимо, чтобы избежать «полосатости» температур.

Теплый пол пленочный. Расчет очень прост: подбираем мощность и ширину так, чтобы давали они требуемое количество тепла

Ширина пленочного теплого пола — 30 см, 50 см, 80 см и 100 см. Вполне можно в одном помещении использовать разные по ширине. Важно чтобы нагревательные элементы не перегревались.

Калькулятор расчета производительности насосно-смесительного узла «теплого пола»

Многие хозяева загородных домов, начитавшись и наслушавшись о тех преимуществах, которые дают водяные «тепловые полы», всерьез задумываются о самостоятельном создании подобной системы обогрева помещений. Следует сразу сказать: задача эта – чрезвычайно непростая, масштабная, требующая мобилизации всех своих умений и навыков как в общестроительных вопросах, так и в сантехническом монтаже. Необходимо с особой тщательностью отнестись к подбору всех комплектующие, которые, в свою очередь, должны отвечать целому ряду важных требований.

Калькулятор расчета производительности насосно-смесительного узла «теплого пола»

Если не считать котел, то в качестве основного узла, обеспечивающего требуемый уровень температуры в контурах и стабильную циркуляцию, выступает насосно-смесительный узел. Его приобретают в готовом виде, то есть заводской сборки, или же монтируют самостоятельно. Но как бы то ни было, он в любом случае должен быть в состоянии обеспечить циркуляцию  необходимого для реально издаваемой системы количества теплоносителя. Как оценить эту способность? В этом может помочь калькулятор расчета производительности насосно-смесительного узла «теплого пола»

Цены на теплый пол

теплый пол

Калькулятор расчета производительности насосно-смесительного узла «теплого пола»

Перейти к расчётам

Пояснения по принципу и порядку проведения расчета

Прежде всего, что такое производительность? Все очень просто – это способность прибора или узла (то есть каждого его элемента) пропустить через себя определённое количество теплоносителя за единицу времени. В рассматриваемом случае это прежде всего касается насоса, обеспечивающего должный уровень циркуляции по всем проложенным контурам «теплого пола». Важна пропускная способность и для двух- или трехходового термоклапана, обеспечивающего дозированное смешение горячих и холодных потоков для получения необходимой температуры.

Понятно, что насос выступает «активным звеном» то есть должен суметь прокачать необходимый объем, а клапан – всего лишь обладать способностью пропустить его через себя. Несмотря на эту принципиальную разницу, значение производительности должно соответствовать параметрам обоих приборов.

  • Естественно, в исходных данных ключевым параметром выступает площадь помещений, в которых расположены контуры «теплого пола», подключенные к данному смесительному узлу. Важное значение имеет и планируемый принцип эксплуатации такой системы – будет ли она зимой выступать в роли единственного источника тепла, либо ее работа необходима лишь для повышения общего уровня комфорта в комнатах, а основная нагрузка все же ляжет на радиаторы. Понятно, что необходимая тепловая мощность для этих двух случаев будет различаться.

Для помещений типа ванны, санузла, прихожей, кухни целесообразно принимать в расчет то условие, что «теплый пол» является единственным источником обогрева.

  • Далее, в основу вычислений положена теплоемкость теплоносителя, то есть его способность накапливать тепловую энергию в котельной и отдавать ее в помещения. Чем больше прокачано жидкости определённой температуры, тем выше перенос тепла. Этот параметр уже заложен в программу расчета.
  • Перепад температуры на подающем и обратном коллекторе вычисляется обычным вычитанием значений. Для водяных теплых полов, при правильной их балансировке и хорошем качестве термоизоляции помещения, оптимальной разницей является 5 ºС. Может быть и несколько больше, но за пределы 8÷10 ºС выходить нельзя. А для комфортного восприятия самой поверхности «теплого пола» достаточно 25-27, реже – 30 ºС .
  • По умолчанию калькулятор произведёт расчет для системы «теплого пола», заполненной водой. Если же применяется иной теплоноситель, то можно сделать поправку и на это обстоятельство. Дело в том, что ни один антифриз не может сравниться с водой по удельной теплоемкости, отличаясь вместе с тем более высокой плотностью. Эти данные могут быть указаны на заводской упаковке теплоносителя, или же их несложно найти в интернете именно для планируемого типа незамерзающей жидкости той или иной концентрации.

Результат будет показан в нескольких единицах измерения – это кубометры в част, литры в минуту и в секунду. Это для того чтобы пользователю не пришлось самостоятельно переводить из одной в другую – различные производители комплектующих практикуют нередко и разный подход в указании производительности своих приборов.

Водяной «теплый пол» — масштабная, трудная. но выполнимая задача

Весь комплекс мероприятий включает множество разноплановых операций – от подготовки основания, утепления, раскладки контуров, заливки стяжки – и до монтажа управляющего оборудования и тонкой отладки системы. Оценить всю масштабность создания водяного «теплого пола» своими руками вам поможет специальная публикация нашего портала.

Мощность теплого пола на 1 м2: порядок расчета

При устройстве системы полового обогрева любого вида важным пунктом становится мощность теплого пола на 1 м2. Изначально это влияет на выбор материала, площадь покрытия и тип нагревательного элемента.

В конечном итоге, эффективность отопления скажется на семейном бюджете в виде ежемесячных плат за электроэнергию. Рассмотрим специфику расчета эффективности отопления полом в зависимости от индивидуальных особенностей.

Необходимые данные

Для начала рассчитайте площадь дома

Для расчета требуемой эффективности элементов необходимо определиться с некоторыми факторами, имеющими непосредственное влияние на этот показатель:

  • отапливаемая площадь;
  • качество теплоизоляции стен и перекрытий;
  • теплопроводность финишного покрытия пола.

Кроме этих данных, важно понимать, в качестве какого элемента будут использоваться полы: основного или дополнительного?

Для беспроблемной работы и гарантированного долгого срока службы отопления она должна работать в режиме, не превышающим 80% от максимальной мощности.

Расчет мощности теплого пола во много зависит от правильности заданной полезной площади.

В качестве основного отопления укладка электрических полов может использоваться только при условии, что покрытие составляет не менее 70% от общей площади помещения.

Для определения эффективности отопления используем формулу P = S*k, где:

P – мощность элемента обогрева;

S – полезная площадь;

k – удельная мощность.

Удельные мощности электрического теплого пола для помещений различного типа:

Тип помещенияУдельная мощность системы теплого пола на 1 м2 (Вт/м2)
1Жилые комнаты, кухня (1 этаж)140-150
2Жилые комнаты, кухня (2 этаж и выше)110-120
3Застекленные и утепленные балконы и лоджии140-180
4Санузлы (1 этаж)120-150
5Санузлы (2 этаж и выше)110-130
6Основное отоплениене менее 180
7Дополнительное создание комфортных условий110-120

Расход электроэнергии при этом весьма приблизительный. Многое зависит от уровня теплоизоляции в целом: уровень теряемого тепла через окна, стены, перекрытия.

Расчет необходимой мощности комфортных полов для санузла общей площадью 10 м2 на втором этаже в качестве основной системы отопления:

Полезная площадь составит: 10/100*70= 7 м2. Удельная сила для санузлов второго этажа 130 Вт/м2, но при этом использование полов как основного элемента системы отопления предполагает мощность не менее 180 Вт/м2.

Принимаем большее значение. Получаем: Р=7*180=1260 Вт (1,26 кВт) – общая теплоотдача пола в санузле.

Не всегда планировка комнаты может позволить использовать половую систему в качестве основного источника отопления. Между нагревательным элементом и мебелью должно быть расстояние не менее 10 см.

В небольших комнатах с широкой мебелью (диван, кровать) использовать систему теплого пола в качестве основной не целесообразно.

Расчет потребления электроэнергии

При проектировании системы обогрева, как правило, составляется чертеж расположения её элементов. Исходя из данных плана, легко высчитать площадь теплого пола. Если чертеж не сохранился, то приблизительно принимаем площадь отапливаемых полов 70% от общей площади.

Условно время работы теплых полов берут из расчета 6 ч в день

Для жилого помещения первого этажа площадью 20 м2, обогревать в качестве основного источника необходимо 14 м2.

Удельная мощность теплого пола для данного типа помещения составляет 150 Вт/м2. Соответственно потребление электроэнергии на систему напольного обогрева составит: 150*14=2100 Вт.

Условно в день полы включены в течение 6 часов, тогда ежемесячная норма составит 6*2,1*30=378 кВт/час. Умножьте полученное число на стоимость 1 кВт в регионе и получите стоимость затрат на электроэнергию в данной комнате.

При условии включения в систему отопления терморегулятора и установки работы в экономичный режим расход на электроэнергию, затрачиваемую полами, можно сократить на 40%.

Мощность системы водяного теплого пола вычислить сложнее, в данных расчетах лучше довериться онлайн — калькулятору или проконсультироваться со специалистом. О том, как рассчитать мощность для пленочных полов, смотрите в этом видео:

Типы нагревательных элементов

Существует несколько видов электрического теплого пола, мощность которых напрямую зависит от типа нагревательного элемента. Электрополы работают на:

Нагревающий элементМощность (Вт/м2)Тип финишного покрытия
Инфракрасная пленка150 — 400Любое
Электрокабель120 — 150Керамическая плитка, керамогранит
Термомат120 — 200Керамическая плитка

Данные приняты среднестатистические, у конкретного бренда показатели могут незначительно отличаться. Таким образом, видно, что устройство любой системы обогрева в помещение любого типа возможно всеми вариантами электрических теплых полов.

Сокращаем затраты

Благодаря применению терморегулятора вы сможете сэкономить до 40 % электроэнергии

Удобство и комфорт, создаваемые отапливаемыми полами, омрачает только один фактор – счет за электроэнергию. Как, не лишая себя удобств, снизить расходы на электроэнергию? Несколько советов по умному потреблению:

  1. Обязательно смонтируйте терморегулятор. Расположить его лучше на максимальном удалении от основной отопительной системы. Регуляторы позволяют сэкономить до 40% электроэнергии за счет необходимого включения.
  2. Максимально снизьте потерю тепла. При необходимости проведите работы по теплоизоляции стен. Согласно опытных статистических исследований, улучшение теплоизоляции снижает расходы на электроэнергию почти в 2 раза.
  3. Установите многотарифную систему оплаты электроэнергии. При этом отопление полами в ночное время обойдется в зависимости от региона в 1,5 – 2 раза дешевле.
  4. Начните экономить ещё на этапе монтажа. Не заводите элементы отопления в места расположения мебели, делайте необходимые отступы от стен и приборов отопления.
  5. И простая математика: понизив температуру всего на 10С, потребление электроэнергии сокращается на 5%.

Подойдите к вопросу укладки теплых полов ответственно. Заранее просчитайте необходимую мощность приборов. Эти данные помогут правильно подобрать элементы нагрева и пользоваться системой без значительного ущерба для семейного бюджета.

Расчет мощности водяного теплого пола по формулам: вычисление числа труб (видео)

В наши дни очень востребованным является теплый пол. Данный вид улучшенного покрытия пола можно смонтировать отдельно или как дополнительное отопление. Установку можно произвести собственноручно или с помощью мастеров. Перед началом работы обязательно нужно произвести все необходимые расчеты.

Если электрический теплый пол будет являться единственным источником отопления, то он должен покрывать как минимум 70% всей площади помещения.

Выбор разновидности теплого пола

Во время выбора разновидности стоит принять во внимание уровень мощности, которым будет обладать покрытие. Ход расчета имеет зависимость от некоторых моментов:

  1. Размер отапливаемой площади.
  2. Типаж помещения.
  3. Разновидность отопления помещения.

Во время расчетов в учет берется только размер полезной площади отапливаемой комнаты. Полезная площадь — это пространство, на котором не находится ни мебели, ни бытовой техники. В связи с этим во время расчета стоит обладать точной информацией, обозначающей расположение в помещении всей мебели и бытовой техники.

Схема подключения.

Дополнительное весомое обстоятельство: если вы эксплуатируете электрический теплый пол в качестве основного вида отопления, то стоит учитывать, что полезная площадь пола, которую нужно обогревать, должна составлять как минимум 70% от общей площади.

Если в комнате располагается мебель с крупными габаритами, то отапливать такую комнату, является довольно-таки затруднительной задачей.

Вернуться к оглавлению

Уровень мощности теплого пола и разновидности помещений

На каждую разновидность помещений приходится наиболее подходящий для нее уровень мощности теплого пола. Если он является основной отопительной системой, в таком случае показатель удельной мощности находится в районе от 150 до 180 Вт. Уровень мощности пола, выполняющего основную обогревающую функцию, должен превышать уровень мощности такого же пола, обеспечивающей дополнительное отопление. Если речь идет о функции дополнительного отопления, удельный уровень мощности находится в районе от 110 до 140 Вт на 1 м2 помещения.

Поскольку каждая комната в доме или в квартире имеет собственные возможности по функциональности, стоит произвести расчет мощности. Во время выполнения расчетов необходимо учесть следующие факторы:

Расчет водяного теплого пола: примеры самостоятельного расчета

Расчет водяного теплого пола предполагает вычисление мощности отопительного контура, достаточной для нивелирования тепловых потерь жилища. Попутно в процессе расчетов определяются и геометрические параметры контура – длина и диаметр труб, а равно и скорость циркуляции теплоносителя в системе.

Итогом расчетов будет формирование схемы укладки контура на полу отапливаемого помещения и составление сметы процесса обустройства «теплого» пола. Проще говоря: рассчитав пол, мы вычислим схему укладки и метраж труб нагревательного контура, попутно определив еще и  объемы бетонной стяжки, погонаж демпферной прокладки и прочие параметры.

Водяной теплый пол

Словом, без точного расчета строительство такой отопительной системы попросту невозможно. Поэтому  в данной статье мы познакомим вас с процессом расчета мощности, гидравлики и геометрии теплого пола.

Вводные данные

Любой расчет начинается с определения типа будущей системы отопления. Ведь теплый пол может работать и в формате основного отопления, и в роли контура комбинированной системы, где помимо него есть еще и традиционная разводка с радиаторами. Разумеется, оба случая требуют совершенно разного подхода к процессу проектирования.

В первом случае нужно рассчитать полноценную систему отопления, способную компенсировать все тепловые потери жилища. А во втором – рассчитать контур, нагревающий пол в «зоне комфорта» до температуры 35-37 градусов Цельсия. То есть мощность систем будет абсолютно разной.

Кроме того в расчетах придется учесть следующие нюансы:

Преимущества водяного теплого пола

  • Климатические данные – эта информация пригодится для определения среднегодовой и пиковой температуры.
  • Планы строения – они пригодятся для определения площади и объема отапливаемых помещений.
  • Сведения о теплостойкости строительных материалов – они пригодятся в процессе определения тепловых потерь жилища.

Помимо этого нужно обратить внимание на расположение и габариты окон, схему расстановки предметов меблировки и напольного текстиля (ковров, паласов и прочего).

В итоге, перед началом расчетов необходимо подготовить план отапливаемого помещения и собрать климатические данные и оценить степень утепления жилища.

Расчет мощности теплого пола

Суть расчета мощности сводится к сопоставлению тепловых потерь дома, расположенного в определенной климатической зоне с энергией, вырабатываемой отопительным контуром. Причем энергия и потери связаны следующей формулой:

Мп=1,2Q

Где Мп – это искомая тепловая мощность пола, Q – это тепловые потери, а 1,2 – это максимальное значение коэффициента запаса, которое изменяется в пределах от 1 до 1,2.

Таким образом, для определения мощности пола нам нужно всего лишь вычислить тепловые потери, определяемые по следующей формуле:

Q=(V*Pt*k)/860

Где V – это объем отапливаемого помещения (площадь, умноженная на высоту потолков), Pt – это разница температур в доме и за его стенами (вычисляется исходя из комфортных 20 градусов Цельсия и температуре самого сильного заморозка), а k – это коэффициент «теплостойкости» жилища (обычно он равен 1,5-2).

Схема укладки слоев теплого пола

Впрочем, если такой пример расчета теплого пола по мощность с помощью формул покажется сложным, то вместо вычислений можно просто воспользоваться специальной программой ( ПО Valtec или его аналоги). Для вычисления мощности в данном случае придется указать температуру самого жестокого заморозка, длину и ширину отапливаемой зоны, месторасположение дома (по области и городу), высоту потолков и тип основного строительного материала жилища (древесина, кирпич и так далее) с толщиной стен.

Итоги работы программы не будут отличаться от «формульных» вычислений.

Расчёт трубы для тёплого пола

Трубы для пола можно рассчитать исходя из ожидаемой мощности системы отопления, сопоставив площадь «развертки» нагревательного элемента (трубы) с температурой теплоносителя.

Однако эта схема сулит долгие вычисления, в которых используются табличные коэффициенты и переменные. Поэтому в большинстве случаев расчет труб проводится «графически».

То есть, на миллиметровой бумаге, поверх эскиза жилища, или прямо на полу отапливаемой зоны вычерчивается контур будущего «нагревательного элемента» (трубы), выстраиваемый по следующим правилам:

Трубы для пола

  • Максимальная длинна трубы в нагревательном контуре – 100-120 метров. Причем труба должна выйти из напорного коллектора и войти в обратку без стыков и разрывов в теле арматуры (цельным мерным отрезком).
  • Шаг размещения труб в спирали контура – 10-15 сантиметров.
  • Диаметр трубы – 16 миллиметров. По этому параметру определяется и толщина стяжки – 6 сантиметров.

Температуру теплоносителя в системе и его скорость определяют по усредненным величинам:

  • 40-55 градусам Цельсия — этого достаточно для прогрева зоны отопления до 25-37 °С.
  • 13-15 кПа — такая потеря давления в контуре обеспечит снижение температуры теплоносителя на выходе из контура на 5-15 °С.
  • 27-30 литрам в час —  это оптимальный расход теплоносителя в контуре с пропускным диаметром 16 миллиметров.

В финале «графического» расчета отопительного контура нужно определить месторасположение выхода из коллектора системы отопления и входа в обратку.

Ну а смета системы отопления «теплый пол» считается исходя из погонажа труб и объема бетонной стяжки.

Кроме того ее дополняют и расходы на термоизоляционную подложку и облицовочную отделку стяжки, рассчитываемые по общей площади теплого пола.

Опубликовано: 14.10.2014

Расчет мощности тёплого пола: как рассчитать для установки?

Если есть желание монтировать теплый пол в своем доме, тогда начинать надо с точных расчетов. От них будет зависеть многое: протяженность контура для отопления, количество труб, параметры насоса, а также будет дополнительно проводиться расчет мощности теплого пола.

Благоустройство теплого пола в квартире, делает нахождение в помещении более комфортным. Каким бы не был способ монтирования теплых полов: они могут быть водяными или электрическим, в любом случае потребуется целая нагревательная конструкция.

Расчет системы

Чаще всего устанавливаются именно водяные полы, так как это оптимальный вариант. Причины для такой установки следующие:

  1. такие теплые полы заменяют отопление в доме, которое предусматривает применение радиаторов.
  2. если теплый пол укладывается в помещении с большой квадратурой, то он полностью окупиться через пять лет.

Надо отметить, что водные полы можно подключить не везде, так как требуется для подключения врезка в систему централизованного отопления.

Ни стоит пытаться монтировать теплый пол своими силами, если нет никаких навыков, так как надо не просто провести монтаж труб в стяжку из бетона, но и запустить всю систему, чтобы она работала. Чтобы рассчитать приблизительную стоимость теплых полов, следует:

  1. обратиться за помощью к специалистам, которые будут устанавливать систему. Они точно смогут предоставить всю необходимую информацию;
  2. можно воспользоваться калькулятором расчетов, который имеется в онлайн. Компьютерная программа после введения всех необходимых данных сама рассчитает приблизительную стоимость;
  3. сделать подсчеты самостоятельно, но, не имея нужных навыков, есть риск, что все расчеты будут сделаны неверно.

Если в расчетах будет допущена хоть малейшая ошибка, то она приведет к проблемам с проектированием, а переделки обойдутся еще дороже.

Как рассчитать потери тепла?

Важную роль играет расчет мощности, который потребуется помещению, чтобы в нем была комфортная температура. На самом деле, расчет теплопотерь считается одним из самых сложных, так на него может влиять множество параметров:

  1. учитывается время года, климат;
  2. понижение или повышение градусов за окном;
  3. назначение помещения;
  4. размер проема окон и дверей;
  5. тип напольного покрытия;
  6. степень теплоизоляции;
  7. наличие других источников тепла, которые также могут сыграть свою роль.

Как правило, специалисты берут средние значения для расчетов. Если здание, хорошо утепленное при помощи качественных стеклопакетов, то показатели равны 40 Вт/м2. В некоторых домах, где теплоизоляция находиться на среднем уровне, теплопотери могут оставлять 70-80 Вт/м2, для старых построек такой показатель увеличивается в несколько раз и может достигать 100 Вт/м2.

Как определить температурный режим?

В жилом помещении теплый пол должен иметь температуру около 29 C, в помещениях, где повышенный уровень влажности такой показатель температуры должен достигать 33 C. Также стоит учитывать и качество монтажа напольного покрытия, например, деревянный пол не стоит нагревать больше, чем 27 C.

Напольное покрытие и проектирование теплого пола

В качестве напольного покрытия можно выбирать кафель или керамогранит. Эти материалы отличаются повышенной теплопроводность, а значит и затраты мощности будут минимальными.

Но в некоторых комнатах, все, же предпочтительнее стелить ламинат или линолеум, тогда лучше всего остановить свой выбор на качественном материале, который имеет теплоизоляционную прослойку. Кроме напольного покрытия, надо учесть и такие моменты:

  1. существует такое понятие, как наибольшая протяженность водяных теплых полов, поэтому эти значения превышать нельзя;
  2. чем короче трубопровод, тем меньше потребуется мощности для отопления;
  3. каждый контур должен иметь одинаковую протяженность;
  4. мощность зависит и от плотности монтажа витков. Как правило, возле окон и дверей стараются укладывать витки плотнее, чем по всей остальной квадратуре комнаты;
  5. если площадь комнаты слишком большая, тогда надо провести установку еще одного контура.

Методика расчета мощности теплого пола

Чтобы иметь представление о расчете мощности, необходимо рассмотреть наглядный пример. Например, теплый пол будет укладываться в помещении со сторонами 5 и 6 метров, то есть общая квадратура составляет 30 м2.

В данном случае, чтобы система функционировала должным образом, надо занять обогревом 70% всей комнаты, то есть 21 м2. В среднем потери теплоотдачи составляют 80 Вт/ м2, тогда для комнаты они будут составлять 1680 Вт/ м2.

Учитывая, что при монтаже напольного покрытия и стяжки температура будет ниже на 7 градусов, чем сама вода в трубах, расчеты будут исходить из:

  1. нужный режим – 20C;
  2. диаметр труб может составлять 20 мм;
  3. а стяжка из цемента не должна быть больше, чем 7 см.

Для монтажа с такими показателями подойдет и пятнадцатиметровый шаг. Максимальная длина одного контура составляет 120 метров, значит, в комнате с такой квадратурой потребуется установить два таких контура.

Кроме протяженности трубопровода надо рассчитать и такие моменты:

  1. надо помнить, что под цементную стяжку должна укладываться гидроизоляция. Материал должен покрывать полностью поверхности пола, с небольшим запасом, который будет находить на стены;
  2. дополнительно потребуется утеплитель, который предназначен именно для водяного теплого пола;
  3. также надо учитывать, что понадобиться армирующая сетка и материал для стяжки.

Все эти материалы влияют на мощность водяного теплого пола. Не сделав все необходимые расчеты, невозможно рассчитать все затраты.

Теплый пол, который связан с работой газового котла считается самым выгодным. Если правильно сделать все расчеты, хорошо утеплить дом, что по эффективности он даже сможет превзойти радиаторы. Но там, где зимы с суровым климатом, стоит также позаботиться и о монтаже радиаторов в некоторых комнатах.

Чтобы расчеты не подвели, надо учитывать квадратуру, характеристики дома или квартиры, желаемую температуру пола и вид напольного покрытия.

Рекомендации

Специалисты говорят о том, что при монтаже теплого пола составляется изначально тепловая карта дома.

По итогам ее составления можно увидеть, что теплопотери на 1 метр квадратный будут составлять 100 Вт, а это означает, что желательно дом хорошо утеплить, а потом устанавливать теплый пол, иначе потребление мощности будет высоким. Также есть средние показатели мощности:

  1. для комнат, где проживают люди и кухни надо 150Вт на 1м2;
  2. ванная комната – 140 Вт;
  3. веранда или лоджия, застекленная качественными стеклопакетами – 180 Вт.

Также отдельно можно просчитать и мощность насоса, который понадобиться для обогрева. Насос надо выбирать с запасом мощности и ориентироваться на показатели средней скорости.

Заключение

Как видим, никаких сложностей в проведении расчета мощности для водяного теплого пола нет. Если не получается сделать такие расчеты самостоятельно, тогда надо воспользоваться калькулятором, который есть в интернете или же обратиться к специалистам.

Важно правильно внести все параметры, подобрать расстояние шага и сечение труб, учесть, какой материал будет использоваться для стяжки и напольного покрытия, а также не забывать, что потребуется гидроизоляция и утеплитель.

Загрузка…

Испарение с водной поверхности

Испарение воды с водной поверхности — например, открытого резервуара, плавательного бассейна и т.п. — зависит от температуры воды, температуры воздуха, влажности воздуха и скорости воздуха над поверхностью воды.

Количество испарившейся воды можно выразить как:

г с = Θ A (x с — x) / 3600 (1)

или

г ч = Θ A (x с — x)

где

г с = количество испарившейся воды в секунду (кг / с)

г ч = количество испарившейся воды в час (кг / ч)

Θ = ( 25 + 19 v ) = коэффициент испарения (кг / м 2 ч)

v = скорость воздуха над водной поверхностью (м / с)

A = площадь водной поверхности (м 2 )

x с = максимальный коэффициент влажностинасыщенного воздуха при той же температуре, что и поверхность воды (кг / кг) (кг H 2 O в кг сухого воздуха)

x = соотношение влажности воздуха (кг / кг) (кг H 2 O в кг сухого воздуха)

Примечание! Единицы для Θ не совпадают, так как это эмпирическое уравнение — результат опыта и экспериментов.

Необходимое теплоснабжение

Большая часть тепла или энергии, необходимых для испарения, берется из самой воды. Для поддержания температуры воды — в воду необходимо подводить тепло.

Необходимое количество тепла для покрытия испарения можно рассчитать как

q = h we g s (2)

где

q = подводимое тепло (кДж / с ( кВт))

h we = теплота испарения воды (кДж / кг)

Пример — Испаренная вода из плавательного бассейна

Имеется бассейн 50 м x 20 м с температурой воды 20 o С. Максимальный коэффициент насыщения влажности воздуха над поверхностью воды составляет 0,014659 кг / кг. При температуре воздуха 25 o C и 50% относительной влажности соотношение влажности в воздухе 0,0098 кг / кг — см. Диаграмму Молье.

При скорости воздуха над поверхностью воды 0,5 м / с коэффициент испарения можно рассчитать как

Θ = (25 + 19 (0,5 м / с))

= 34.5 кг / м 2 h

Площадь бассейна можно рассчитать как

A = (50 м) (20 м)

= 1000 м 2

Испарение от поверхность может быть рассчитана как

г с = (34,5 кг / м 2 ч ) (1000 м 2 ) ((0,014659 кг / кг) — (0,0098 кг / кг) ) / 3600

= 0,047 кг / с

Теплота (энтальпия) испарения воды при температуре 20 o C составляет 2454 кДж / кг .Подвод тепла, необходимый для поддержания температуры воды в бассейне, можно рассчитать как

q = (2454 кДж / кг) (0,047 кг / с)

= 115,3 кВт

Потери энергии и необходимое количество тепла можно уменьшить на

  • уменьшение скорости воздуха над поверхностью воды — ограниченный эффект
  • уменьшение размера бассейна — непрактично
  • снижение температуры воды — не комфортное решение
  • снижение температуры воздуха — не комфортное решение
  • увеличение содержания влаги в воздухе — может увеличить конденсацию и повреждение строительных конструкций для внутренних бассейнов
  • удалить влажную поверхность — возможно с пластиковыми одеялами на поверхности воды снаружи время операции.Очень эффективный и часто используемый

Примечание! — во время работы в бассейне может резко увеличиваться испарение воды и необходимое количество тепла.

Чтобы снизить потребление энергии и избежать повреждения строительных конструкций из-за влаги, обычно используют устройства рециркуляции тепла с тепловыми насосами, передающими скрытое тепло из воздуха в воду в бассейне.

Калькулятор испарения с поверхности воды

Плотность, удельный вес и коэффициент теплового расширения

Плотность — это отношение массы к объему вещества:

ρ = м / В [1]

где
ρ = плотность, обычно единицы [г / см 3 ] или [фунт / фут 3 ]
м = масса, обычно единицы [г] или [фунты]
V = объем, обычно единицы [см 3 ] или [фут 3 ]

Чистая вода имеет самую высокую плотность 1000 кг / м 3 или 1.940 снарядов / фут 3 при температуре 4 ° C (= 39,2 ° F).

Удельный вес отношение веса к объему вещества:

γ = (м * г) / V = ​​ρ * г [2]

где
γ = удельный вес, ед. обычно [Н / м 3 ] или [фунт-сила / фут 3 ]
м = масса, обычно единицы [г] или [фунт]
г = ускорение свободного падения, обычно единицы [м / с 2 ] а значение на Земле обычно равно 9.80665 м / с 2 или 32,17405 фут / с 2
V = объем, обычно единицы [см 3 ] или [фут 3 ]
ρ = плотность, обычно единицы [г / см 3 ] или [фунт / фут 3 ]

Пример 1: Удельный вес воды
В системе SI удельный вес воды при 4 ° C будет:

γ = 1000 [кг / м3] * 9.807 [ м / с2] = 9807 [кг / (м2 с2)] = 9807 [Н / м3] = 9,807 [кН / м3]

В британской системе единицей измерения массы является снаряд [sl] , и она получается из фунт-сила, определив его как масса, которая будет ускоряться со скоростью 1 фут в секунду в квадрате, когда на нее действует сила в 1 фунт :

1 [фунт f ] = 1 [сл] * 1 [фут / s2] и 1 [sl] = 1 [фунт f ] / 1 [фут / с2]

Плотность воды равна 1.940 сл / фут 3 при 39 ° F (4 ° C), а удельный вес в британских единицах измерения составляет

γ = 1,940 [сл / фут3] * 32,174 [фут / с2] = 1,940 [фунт f ] / ([фут / с2] * [фут3]) * 32,174 [фут / с2] = 62,4 [фунт f / фут3]

Подробнее о разнице между массой и весом

Онлайн-калькулятор плотности воды

Калькулятор ниже можно использовать для расчета плотности жидкой воды при заданных температурах.
Плотность на выходе указана в г / см 3 , кг / м 3 , фунт / фут 3 , фунт / галлон (жидкий раствор США) и сл / фут 3 .

Примечание! Температура должна быть в пределах 0–370 ° C, 32–700 ° F, 273–645 K и 492–1160 ° R, чтобы получить допустимые значения.

Плотность воды зависит от температуры и давления, как показано ниже:

См. Термодинамические свойства при стандартных условиях в разделе «Вода и тяжелая вода».
См. Также другие свойства Вода при изменении температуры и давления : Точки кипения при высоком давлении, Точки кипения при вакуумном давлении, Динамическая и кинематическая вязкость, Энтальпия и энтропия, Теплота испарения, Константа ионизации, pK w , нормальной и тяжелой воды, точки плавления при высоком давлении, число Прандтля, свойства в условиях равновесия газ-жидкость, давление насыщения, удельный вес, удельная теплоемкость (теплоемкость), удельный объем, теплопроводность, температуропроводность и давление пара в газе -жидкое равновесие.
Для других веществ см. Плотность и удельный вес ацетона, воздуха, аммиака, аргона, бензола, бутана, диоксида углерода, монооксида углерода, этана, этанола, этилена, гелия, водорода, метана, метанола, азота. , кислород, пентан, пропан и толуол.
Плотность сырой нефти , плотность мазута , плотность смазочного масла и плотность топлива в зависимости от температуры.

Как показано на рисунках, изменение плотности не является линейным с температурой — это означает, что коэффициент объемного расширения воды не является постоянным в диапазоне температур.

Плотность воды, удельный вес и коэффициент теплового расширения при температурах, указанных в градусах Цельсия:

Для полной таблицы с удельным весом и коэффициентом теплового расширения — поверните экран!

-0,686 5.9431 + +
Температура Плотность (0-100 ° C при 1 атм,> 100 ° C при давлении насыщения)
Удельный вес Коэффициент теплового расширения
[° C] [г / см 3 ] [кг / м 3 ] [сл / фут 3 ]

29 9042 [фунт м / фут 3 ]
[фунт м / галлон (жидк. США)] [кН / м 3 ] [фунт f / фут 3 ] [ * 10 — 4 K -1 ]
0.1 0,9998495 999,85 1,9400 62,4186 8,3441 9,8052 62,419
1 0,9999017 999,90 1,9401 62,4218 8,3446 9,8057 62,422 -0,50
4 0,9999749 999,97 1,9403 62,4264 8.3452 9,8064 62,426 0,003
10 0,9997000 999,70 1,9397 62,4094 8,3429 62,4094 8,3429 99042 1,9386 62,3719 8,3379 9,7978 62,372 1,51
20 0.9982067 998,21 1,9368 62,3160 8,3304 9,7891 62,316 2,07
25 0,9970470 997,05 1,9346 62,2436 8,3208 9,7777 62,244 2,57
30 0,9956488 995,65 1,9319 62,1563 8,3091 9.7640 62,156 3,03
35 0,9940326 994,03 1,9287 62,0554 8,2956 9,7481 62,055 3,45
40 0,92 992,22 1,9252 61.9420 8.2804 9.7303 61.942 3.84
45 0.99021 990.21 +1,9213 61,8168 8,2637 9,7106 61,817 4,20
50 0,98804 988,04 1,9171 61,6813 8,2456 9,6894 61,681 4,54
55 0,98569 985,69 1,9126 61,5346 8,2260 9,6663 61.535 4,86 ​​
60 0,98320 983.20 1.9077 61.3792 8.2052 9.6419 61.379 9.6419 61.379 5,16 8,1831 9,6159 61,214 5,44
70 0,97776 977,76 1.8972 61,0396 8,1598 9,5886 61,040 5,71
75 0,97484 974,84 1,8915 60,8573 8,1354 9,5599 60,857 5,97
80 0,97179 971,79 1.8856 60.6669 8.1100 9.5300 60.667 6.21
85 0,96861 968,61 1,8794 60,4683 8,0834 9,4988 60,468 6,44 9042 9,4665 60,262 6,66
95 0,96189 961,89 1,8664 60.0488 8,0274 9,4329 60,049 6,87
100 0,95835 958,35 1,8595 59,8278 7,9978 9,3982 59,828 7,03
110 0,95095 950.95 1.8451 59.3659 7.9361 9.3256 59.366 8.01
120 0.+94311 943,11 1,8299 58,8764 7,8706 9,2487 58,876 8,60
140 0, 926,13 1,7970 57,8164 7,7289 9,0822 57,816 9,75
160 0, 907,45 1,7607 56,6503 7,5730 8.8990 56.650 11.0
180 0.88700 887.00 1.7211 55.3736 7.4024 8.6985 12426 53.9790 7.2159 8.4794 53.979 13.9
220 0.84022840.22 1,6303 52,4532 7,0120 8,2397 52,453 16,0
240 0,81337 813,37 1,5782 50,7770 6,7879 7,9764 50,777 18,6
260 0,78363 783,63 1,5205 48,9204 6,5397 7,6848 48.920 22,1
280 0,75028 750,28 1,4558 46,8385 6,2614 7,3577 46,838 7,3577 46,838
46,838
6.9837 44,457
320 0,66709 667,09 1,2944 41.6451 +5,5671 6,5419 41,645
340 0,61067 610,67 1,1849 38,1229 5,0963 5,9886 38,123
360 0,52759 527,59 1,0237 32,9364 4,4030 5,1739 32,936
373,946 0.3220 322,0 0,625 20,102 2,6872 3,1577 20,102


Таблица плотности воды, удельного веса и коэффициента теплового расширения при температурах в градусах 9000 по Фаренгейту2 и коэффициент теплового расширения — поверните экран!

9042 9042 9042 8,3442 3,66 9042 9,42 6,31 9042 9042 9042 9,444
Температура Плотность (0-212 ° F при 1 атм,> 212 ° F при давлении насыщения)
Удельный вес 9010
[° F] [фунт м / фут 3 ] [сл / фут 3 ] [фунт м / галлон (США) жидкий)] [г / см 3 ] [кг / м 3 ] [фунт на / фут 3 ] [кН / м 3 ] [ * 10 -4 K -1 ]
32.2 62,42 1,9400 8,3441 0,99985 999,9 62,42 9,805 -0,68
-0,68
34 62,42 9,806 -0,50
39,2 62,43 1,9403 8,3452 0,99997 1000,0 62.43 9,806 0,0031
40 62,42 1,9402 8,3450 0,99995 1000,0 62,42 9,806 62,42 9,806 62,42 9,806 62,42 9,806 0,99970 999,7 62,41 9,804 0,88
60 62,36 1,9383 8.3369 0,99898 999,0 62,36 9,797 1,59
70 62,30 1,9364 8,3283 0,9976 8,3283 0,9976 0,9976 8,3283 0,9976 9042 62,22 1,9338 8,3172 0,99662 996,6 62,22 9,773 2,72
90 62.11 1,9306 8.3035 0,99498 995,0 62,11 9,757 3,21
100 62,00 1,9266
110 61,86 1,9227 8,2697 0,99093 990,9 61,86 9.718 4,08
120 61,71 1,9181 8,2499 0,98855 988,6 61,71 988,6 61,71 9,694 4,46 9,694 4,46 9,694 4,46 9097 986,0 61,55 9,669 4,81
140 61,38 1,908 8.205 0,9832 983,2 61,38 9,642 5,16
150 61,19 1,902 8,180 0,9806 61,00 1,896 8,154 0,9771 977,1 61,00 9,582 5,71
170 60.79 1,890 8,127 0,9738 973,8 60,79 9,550 6,05
180 60,58 1.886 60429 9042 9 8,042 9,0429 9042 9,086
190 60,35 1,876 8,068 0,9668 966,8 60,35 9.481 6,57
200 60,12 1,869 8,037 0,9630 963,0 60,12 9,444 6,79 6,79 958,4 59,83 9,398 7,07
220 59,63 1,853 7,971 0.9552 955,2 59,63 9,367
240 59,10 1,837 7,900 0,9467 946,7 0,9467 946,7 59426 7,824 0,9375 937,5 58,53 9,194
280 57,93 1.800 7,744 0,9279 927,9 57,93 9,100
300 57,29 1,781 7,659 0,9429 0,942 55,59 1,728 7,431 0,8905 890,5 55,59 8,733
400 53.67 1,668 7,175 0,8598 859,8 53,67 8,432
450 51,45 1,599 6,878 1,599 6,878 1,599 6,878 1,599 6,878 500 48,92 1,521 6,540 0,7836 783,6 48,92 7,685
550 45.95 1,428 6,142 0,7360 736,0 45,95 7,218
600 42,36 1,317 5,663 1,317 5,663 1,317 5,663 1,317 5,663 625 40,12 1,247 5,363 0,6426 642,6 40,12 6,302
650 37.35 1,161 4,993 0,5982 598,2 37,35 5,867
675 33,79 1,050

Плотность воды и удельный вес при 1000 psi и данных температурах:

Для полного стола с удельным весом — поверните экран!

62,62 9042 8,29
Температура Плотность (при 1000 psi или 68.1 атм) Удельный вес
[° C] [° F] [г / см 3 ] 3 кг / ] [сл / фут 3 ] [фунт м / фут 3 ] [фунт м / галлон (литр США)] [ фунт f / фут 3 ] [кН / м 3 ]
0.0 32 1,0031 1003,1 1,946 62,62 8,371 62,62 9,837
4,4 40 9031 100429 4,4 9,837
10,0 50 1,0031 1003,1 1,946 62,62 8,371 62.62 9,837
15,6 60 1,0024 1002,4 1,945 62,58 8,366 62,58 9,8316 62,58 9,8316 62,50 8,355 62,50 9,818
26,7 80 0,9999 999,9 1.940 62,42 8,344 62,42 9,805
32,2 90 0,9981 998,1 1,937 998,1 1,937 62,316 62,31 62,31 62,31 62,31 0,9962 996,2 1,933 62,19 8,314 62,19 9,769
43,3 110 0.9944 994,4 1,928 62,03 8,292 62,03 9,744
48,9 120 0,9912 991.2 0,9912
54,4 130 0,9888 988,8 1,919 61,73 8,252 61,73 9.697
60,0140 0,9864 986,4 1,914 61,58 8,232 61,58 9,673
9042
8,207 61,39 9,644
71,1 160 0,9803 980,3 1,902 61.20 8,181 61,20 9,614
76,7 170 0,9768 976,8 1,895 60,98 8,152 8,152 8,152 973,1 1,888 60,75 8,121 60,75 9,543
87,8 190 0.9696 969,6 1.881 60,53 8,092 60,53 9,509
93,3 200 0,9661 9666,1 9042 9042 9042 9042 9042 9666,1 9666,1
121,1250 0,9456 945,6 1,835 59,03 7,891 59,03 9.273
148,9 300 0,9217 921,7 1,788 57,54 7,692 57,54 7,692 57,54 9,039
9,039
9,039
7,463 55,83 8,770
204,4 400 0,8636 863,6 1,676 53.91 7.207 53.91 8.469
260.0 500 0,7867 786,7 1,526 49,11 6,565 49,11 6,565 точка


Плотность воды и удельный вес при 10 000 psi и заданных температурах:

Для полного стола с удельным весом — поверните экран!

7,59
Температура Плотность (при 10 000 фунтов на кв. Дюйм или 681 атм) Удельный вес
[° C] 9042 9042 9042 9042 [° C] 9042 [г / см 3 ] [кг / м 3 ] [сл / фут 3 ] [фунт м / фут 3 ] [фунт м / галлон (жидкий раствор США)] [фунт фут / фут 3 ] [кН / м 3 ]
0.О 64,4 10,12
10,0 50 1,031 1031 2,000 64,4 8,60 64.4 10,11
15,6 60 1,029 1029 1,997 64,3 8,59 64,3 10,09 21425 9042 9042 9042 21425 64,1 8,58 64,1 10,08
26,7 80 1,026 1026 1,990 64.О 1021 1,982 63,8 8,52 63,8 10,02
43,3 110 1,019 1019 1.977 63,6 8,51 63,6 9,99
48,9 120 1,017 1017 1,973 63,5 9042 9042 9042 9042 1,014 1014 1,968 63,3 8,46 63,3 9,94
60,0 140 1.011 1011 1,962 63,1 8,44 63,1 9,92
65,6 150 1,008 1008
71,1 160 1,005 1005 1,951 62,8 8,39 62,8 9,86
76.7 170 1,002 1002 1,945 62,6 8,37 62,6 9,83
82,2 180 9042 9042 9042 9042 9042 9042 9,83 62,4 9,80
87,8 190 0,996 996 1,932 62,2 8,31 62.2 9,77
93,3 200 0,992 992 1,926 62,0 8,28 62,0 9,73 121 9042 9042 9042 9042 9042 9042 9042 9042 9042 9042 9042 9042 9042 9042 9042 9042 60,8 8,13 60,8 9,55
148,9 300 0,953 953 1,849 59.5 7,95 59,5 9,35
176,7 350 0,930 930 1.805 58,1 7,76 9042 9042 9042 9042 9042 9042 905 1,756 56,5 7,55 56,5 8,88
260,0 500 0,847 847 1.643 52,9 7,07 52,9 8,31
315,6 600 0,774 774 1,501 48,3 9,46 9,46 9429 48,3 9,46 галлон основан на 7,48 галлона на кубический фут .

  • 1 галлон (жидкий раствор США) = 3,7854 л = 0,8327 галлона (Великобритания) = 0,8594 галлона (сухой раствор США) = 0,1074 галлона (сухой раствор США) = 0,4297 упак. (Сухой раствор США) = 4 кварты (жидкий раствор США) = 8 пунктов (США) liq) = 16 c (США) = 32 gi (жидкий раствор США) = 128 жидких унций (США) = 1024 жидких унций (США) = 3.7854×10 -3 м 3 = 0,1337 фута 3 = 4,951×10 -3 ярдов 3

Для преобразования плотности в кг / м 3 в другие единицы плотности — или между единицами измерения — используйте приведенные ниже значения преобразования:

  • 1 кг / м 3 = 1 г / л = 0,001 кг / л = 0,000001 кг / см 3 = 0,001 г / см 3 = 0,99885 унций / фут 3 = 0,0005780 унций / дюйм 3 = 0,16036 унций / галлон (Великобритания) = 0,1335 унций / галлон (жидкий раствор США) = 0.06243 фунт / фут 3 = 3,6127×10-5 фунтов / дюйм 3 = 1,6856 фунт / ярд3 = 0,010022 фунт / галлон (Великобритания) = 0,008345 фунт / галлон (жидкий раствор США) = 0,00194032 сл / фут 3 = 0,0007525 тонна (длинная) / ярд 3 = 0,0008428 тонна (короткая) / ярд 3

См. также преобразователь плотности

Пример 2: Плотность воды в унциях / дюйм 3
Плотность воды при температуре 20 o C составляет 998,21 кг / м 3 (таблица выше). Плотность в единицах унций / дюйм 3 может быть вычислена с помощью приведенного выше значения преобразования в

998.21 [кг / м 3 ] * 0,0005780 [(унция / дюйм 3 ) / (кг / м 3 )] = 0,5797 [унция / дюйм 3 ]

Пример 3: Масса горячего Вода
Бак объемом 10 м 3 содержит горячую воду с температурой 190 ° F. Из приведенной выше таблицы плотность воды при 190 ° F составляет 966,8 кг / м 3 . Общая масса воды в баке может быть рассчитана

10 [м 3 ] * 966,8 [кг / м 3 ] = 9668 [кг]

См. Также гидростатическое давление в воде и энергию, запасенную в горячей воде

10 наиболее часто задаваемых вопросов о теплых полах с подогревом

Лучистые полы с подогревом становятся все более популярным способом обогрева вашего дома, и мы понимаем, что в качестве относительно нового решения в области отопления у вас могут возникнуть некоторые вопросы об основах этой технологии.В этом руководстве мы ответим на некоторые из ваших наиболее часто задаваемых вопросов.

1. Что такое теплый пол?

Излучающий пол с подогревом — это современный и энергоэффективный способ обогрева вашего дома без использования громоздких радиаторов.

Напольные обогреватели используют технологию лучистого тепла для обогрева помещения. Лучистое отопление нагревает комнату с нуля прямо до предметов и людей в комнате, в отличие от центрального отопления, которое фокусируется на нагревании воздуха в комнате.Лучистое отопление — это гораздо более энергоэффективный способ обеспечить комфорт в помещении, поскольку теплый воздух имеет привычку выходить из комнаты.

Напольные обогреватели также требуют меньше энергии для работы, производя такой же комфортный уровень тепла, как и традиционная система центрального отопления, что делает систему подогрева более чистым способом обогрева вашего дома, а также экономит ваши деньги на счетах за электроэнергию.

2. Безопасен ли теплый пол с подогревом?

Полы с подогревом оказались очень безопасным решением для обогрева вашего дома.Как «невидимая» система , и в отличие от радиаторов центрального отопления, напольные обогреватели не имеют горячих поверхностей или открытых нагревательных элементов, о которых вы можете пораниться. С этими системами также отсутствует риск поражения электрическим током. Лучистые обогреватели также полезны для вашего самочувствия, поскольку они сохраняют воздух в помещении более свежим, уменьшая циркуляцию пыли — распространенную проблему в помещениях с центральным отоплением.

Наши продукты имеют всемирно признанные сертификаты безопасности , в том числе знаки Intertek BEAB Approved, BEAB Component Mark, ETL Approved Mark и CSA и CSAus.Щелкните здесь, чтобы узнать больше о наших аккредитациях. (warmup.co.uk/about/best-accreditations)

Для гарантированной безопасности важно, чтобы ваша система отопления всегда устанавливалась квалифицированным специалистом по установке , который раньше работал с подогревом полов.

3. Сэкономит ли меня теплый пол?

Лучистое отопление — это энергосберегающее отопительное решение для вашего проекта, которое может обеспечить значительную экономию на ваших счетах за отопление .Полы с подогревом нагреваются быстрее, чем центральное отопление, и работают при более низких температурах, обеспечивая при этом такой же уровень тепла. Вы можете максимизировать эффективность напольного обогревателя, установив систему с нашими изоляционными плитами , которые могут сократить время нагрева и предотвратить утечку тепла из комнаты, и управляя системой с помощью интеллектуального термостата Warmup Smart Thermostat вместе с нашим MyHeating и AutoSwitch , которые могут сэкономить вам до 378 фунтов стерлингов в год на ваших ежегодных счетах за электроэнергию.

Стоимость покупки системы и ее установки зависит от размера и объема вашего проекта. Водные системы более дороги в приобретении и установке, но обеспечивают более низкие долгосрочные эксплуатационные расходы, в то время как наши электрические системы имеют конкурентоспособные цены, но полагаются на электроснабжение от сети, которая обычно имеет более высокие тарифы на электроэнергию. Установка системы с ослабленным проводом с сопутствующей изоляцией и контроллером отопления в ванной обычного размера обойдется примерно в 470 фунтов стерлингов + НДС и затраты на установку, но стоимость этого может быть покрыта за счет долгосрочной экономии на счетах за отопление.

Получите предложение сегодня или узнайте больше о затратах и ​​текущих расходах на систему Warmup.

4. Как работают теплые полы?

Электрические обогреватели для пола состоят из электрических нагревательных проводов , часто образованных в виде нагревательного мата, которые устанавливаются под отделкой пола и проводят электричество и преобразуют эту энергию в оптимальную тепловую мощность излучения. График температуры и нагрева системы контролируется и регулируется с помощью специального термостата.

В системах водяного теплого пола, также известных как гидронные системы, используются трубы отопления , которые распределяют теплую воду по всей системе, чтобы тепло обогревать пространство. Эта вода смешивается из горячей воды из вашего источника тепла (например, комбинированного котла или грунтового теплового насоса) и более холодной воды из трубопроводов через коллектор, который регулирует давление, температуру и поток. Чтобы узнать больше о том, как работают манифольды, прочтите наше руководство.

5. Какие существуют основные варианты подогрева пола?

Warmup предлагает водяной обогреватель и электрический обогреватель пола .Оба варианта подходят для использования в проектах нового строительства и ремонта.

Популярным выбором является решение для лучистого отопления hybrid . Электрические системы могут быть установлены в качестве вторичных источников тепла в проекте, который, например, будет в первую очередь отапливаться системой центрального отопления. Вы также можете установить электрические и водяные системы для одновременного обогрева дома.

6. Какая отделка пола лучше всего подходит для лучистого отопления?

Независимо от того, какую отделку пола вы используете в своем проекте, для вас найдется лучистый напольный обогреватель Warmup.

Благодаря своим естественным теплопроводным свойствам камень и плитка идеально подходят для обогрева с помощью системы теплого пола. Для деревянного пола вы можете использовать натуральную или конструкционную древесину, однако мы рекомендуем более тонкую и плотную древесину, чтобы обеспечить оптимальную производительность системы отопления.

Камень или керамическая плитка «пригодность для теплого пола делает их идеальным выбором для ванных комнат и кухонь. Плитка быстро нагревается и помогает равномерно распределять это тепло от обогревателя по комнате.Система развязки DCM-PRO разработана для использования с плиточными полами; его мембрана оснащена технологией защиты от разрушения, которая может защитить вашу плитку от потенциальных трещин, вызванных движением черного пола.

Более мягкие типы полов, такие как ковровое покрытие или винил , можно обогревать с помощью широкого спектра наших систем водяного и электрического обогрева, причем фольгированный обогреватель является отличным выбором для обогрева коврового покрытия.

Ознакомьтесь с нашим руководством по лучшим напольным покрытиям для лучистого отопления здесь

7.Подходит ли теплый пол для моего проекта?

Идеальный обогреватель для вашего проекта зависит от нескольких ключевых факторов:

  • площади, в которой вы его устанавливаете,
  • его размера и высоты потолка
  • отделки пола, с которой вы будете использовать его с

Как правило Практически, мы предлагаем установить электрические системы для проектов реконструкции или для использования в небольших жилых помещениях и системы водоснабжения для проектов новостроек или больших помещений.Это связано с тем, что электрические напольные обогреватели имеют гораздо меньшую высоту застройки пола, чем водяные системы, и предлагают более быстрое время установки.

Если вы ремонтировали ванную комнату , например, с керамической плиткой для пола, мы бы порекомендовали нашу электрическую систему DCM-PRO, которая была специально разработана для таких проектов. Если вы работали над большим строительным проектом, например, строили собственный дом, мы можем порекомендовать установить систему водяного теплого пола, такую ​​как Clypso System, которую вы должны указать на этапах проектирования, чтобы учесть ее высоту надстройки пола.Вы также можете модернизировать лучистый обогреватель в старинной собственности; Наша система перекрытий с балками Econna была разработана для использования с традиционными деревянными полами с балками и балками.

Все наши напольные обогреватели должны устанавливаться квалифицированным монтажником, который ранее устанавливал полы с подогревом, и должен быть проведен расчет теплопотерь, чтобы понять требования к обогреву помещения.

Для получения дополнительных советов воспользуйтесь онлайн-системой выбора системы здесь.

8. Какова толщина системы теплого пола?

Многие из наших систем подогрева пола практически не влияют на высоту застройки пола.

Электрическая система со свободным проводом имеет самый тонкий нагревательный провод на рынке, имеет толщину всего 1,8 мм , что означает, что этот нагреватель можно установить практически в любом пространстве с минимальным влиянием на наплыв пола. Система StickyMat также представляет собой отличное низкопрофильное решение; он имеет толщину всего 3 мм и обеспечивает быстрый монтаж. Системы Loose Wire и StickyMat могут быть установлены внутри слоя клея для плитки или выравнивающей смеси, поэтому высота пола не будет увеличиваться.

Гидравлические системы Warmup обычно сильнее влияют на полы наверху, поэтому лучше всего определять систему водяного отопления на ранней стадии процесса проектирования нового здания. Однако наша водная система Total-16 — отличный выбор, если вы беспокоитесь о том, чтобы поднять пол; при глубиной всего 16 мм его можно установить во многих проектах реконструкции без значительных изменений пространства.

9. Нужен ли мне специальный термостат для управления системой теплого пола?

Все нагреватели пола управляются определенным термостатом или серией термостатов в зависимости от масштаба вашего проекта.Warmup предлагает широкий выбор термостатов в соответствии с вашими требованиями, независимо от того, предпочитаете ли вы термостат Smart или более простой термостат с циферблатом.

4iE Smart WiFi Thermostat работает с вашим смартфоном для удаленного доступа и создания интуитивно понятного автоматического графика отопления для вашего дома. Или наш программируемый термостат Tempo позволяет вам установить график нагрева вручную.

Нашими интеллектуальными термостатами также можно управлять с помощью других интеллектуальных технологий в вашем доме, таких как Amazon Echo — чтобы узнать больше об этом, прочитайте наше руководство здесь .

10. Сколько времени нужно для нагрева водяного теплого пола?

Электрические напольные обогреватели обеспечивают быстрый нагрев раз , но точное время, необходимое для обогрева комнаты, зависит от нескольких переменных, таких как:

  • Размер комнаты
  • Потери тепла и изоляция площади
  • Используемая отделка пола.
  • Тип системы и источник тепла

Однако можно ожидать, что электрический напольный обогреватель в отделанной плиткой ванной комнате достигнет оптимальной комфортной температуры всего за 20 минут .Водным системам требуется больше времени для первоначального нагрева, но, когда они начинают работать эффективно, вырабатывается более постоянное тепло.

Идеальная температура, при которой должен работать теплый пол, также варьируется; для дерева, ковров и виниловых полов мы рекомендуем максимальную температуру нагрева 27 градусов, а для камня и плитки — чуть более высокую температуру — 29 градусов.

Потепление за счет [меньше] апвеллинга холодной океанской воды

Гостевое эссе Вима Рёста

Вероятно, самый охраняемый секрет в «климатическом мире»: охлаждает глубокой мощности.Некоторое внимание уделяется поглощению тепла океанами, но не учитывается охлаждающая способность глубокого моря . Эти возможности огромны и могут иметь (и могли иметь) решающее значение в борьбе с климатом и изменением климата.

Рис. 1. Температуры в северной и южной части Атлантического океана

Источник: http://i.stack.imgur.com/rugfb.png

Океаны в среднем имеют глубину 3,688 метра. Поверхностный слой, напрямую связанный с атмосферой, имеет толщину всего 100-200 метров.Ниже этого слоя мы находим воду от холодной до очень холодной. И, как мы знаем, вода обладает огромной способностью поглощать тепло. Это означает, что он также имеет огромную емкость для охлаждения.

Температура верхнего слоя составляет в среднем 18 ºC. Существует большая разница в температуре между поверхностным слоем и слоем на 200 метров глубже. Согласно AR5 (рис. 3.1d) поверхностный слой в среднем на 6,3 ºC теплее, чем слой на 200 метров ниже. Практически весь апвеллинг будет влиять на температуру поверхностного слоя таким образом, что он сильно охлаждает поверхность.

Ниже 1000 метров температура составляет всего 5 градусов ºC или ниже.

Рис. 2. Термоклин в тропическом океане

Источник: https://upload.wikimedia.org/wikipedia/commons/c/cb/THERMOCLINE.png

Общее содержание воды в Мировом океане огромно. В одном кубическом километре содержится миллиард м 3 . А в океане почти 1,3 миллиарда кубических километров воды. Но с площадью поверхности 362 миллиона км2 в верхнем слое океанов (верхние 200 метров) «всего» содержится 72.4 млн км 3 . Большая часть океанской воды (95%) холодная «глубоководная».

В верхнем слое океана происходит значительное перемешивание водных масс. В основном ветер.

Рис. 3 Районы с апвеллингом

Источник: NOAA

Самой холодной и глубокой океанской воде требуется (самое большее) около 1000 лет, чтобы достичь поверхностного слоя. Это означает, что другие, менее глубокие слои океана поднимаются быстрее.

Ежегодно [средний] поверхностный слой охлаждается огромным количеством поднимающейся холодной океанской воды.Достигнув поверхности, эта холодная вода нагревается солнцем.

В «климатическом мире» предполагается, что существует постоянное охлаждение поверхностного слоя восходящими водами.

Ежегодно поднимается не менее одного миллиона кубических километров холодной океанской воды *. Если этот миллион кубических километров в любой год превратится в два миллиона кубических километров или всего лишь полмиллиона кубических километров, это изменение окажет существенное влияние на температуру поверхности океанов Земли.А значит, от температуры атмосферы.

Апвеллинг вызывается ветром, и поскольку ветер непостоянен и зависит от изменений давления, изменения количества апвеллинга могут быть значительными. Существуют вариации давления.

Самый простой расчет заключается в следующем. Теплосодержание измеряется в ºC / миллион км 3 .

Через год общее теплосодержание поверхностного слоя будет 1303,2 минус 18 плюс 5 = 1290,2.Температура поверхностного слоя (в этом примере исключается влияние нагрева солнцем) через год будет 1290,2 / 72,4 = 17,84 ºC. Поверхность океана всего за год существенно остыла на 0,18 градуса Цельсия.

В случае, если солнечное нагревание не меняется каждый год, удвоение апвеллинга за один год приведет к чистому охлаждению поверхности океана на 0,18 ºC. И, с другой стороны, половина апвеллинга вызовет потепление поверхности океана на 0,09 ºC за один год.

Конечно, апвеллинг может уменьшаться (или увеличиваться) в течение ряда лет также на меньшие проценты. Столетие с двухпроцентным уменьшением апвеллинга приводит к потеплению поверхностных вод океана на 2 x 0,18 = 0,36 ºC, при прочих равных условиях.

Потенциал охлаждения из океанов огромен. Даже при незначительных изменениях расхода воды.

Следовательно, все потепление поверхности океана со времен Малого ледникового периода г. могло быть г. результатом относительно небольшого уменьшения апвеллинга холодной глубоководной воды океана.

Чтобы судить о «потеплении», мы должны сначала , знать все, что нужно знать об охлаждении.

Что касается комментариев: пожалуйста, придерживайтесь правил, известных для этого сайта: цитируйте и реагируйте, а не личные. Приветствуется фактическая информация по этой теме.

Об авторе: Вим Рёст изучал географию человека в Утрехте, Нидерланды. Вышесказанное — его личное мнение. Он не связан с фирмами или фондами и не финансируется государством (ами)

* Некоторые данные об объеме воды в океане, производстве глубинных и придонных вод (стоков) и апвеллинге глубоководных

Источник: https: // www.nap.edu/read/10136/chapter/18#234

Резкое изменение климата — Национальный исследовательский совет (2002)

ТАБЛИЦА 4b (…) упрощенное представление глобальной океанической циркуляции (…) из работы Ganachaud and Wunsch (2000) на основе современных океанографических данных.

Из рисунка выше:

Данные в Sv (Свердруп). Один Sverdrup эквивалентен потоку 1 млн м 3 в секунду. Что составляет один кубический километр за 1000 секунд. В году 31 556 926 секунд.

Общий объем океана: 1,335 млн км 3 (1,3 млрд км 3 )

(источник NOAA: https: //www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html)

Для сравнения:

Один олимпийский плавательный бассейн имеет содержание воды 2.500.000 л = 2.500 м 3

Один кубический километр имеет содержание воды 1.000.000.000: 2.500 = 400.000 олимпийских плавательных бассейнов

Общее содержание воды в миллионах кубических километров составляет 400.000.000.000 (400 миллиардов) олимпийских плавательных бассейнов.

Общее содержание океана составляет 1,335 млн. Км 3 океанской воды, 95% которой составляют холодные глубоководные воды

Нравится:

Нравится Загрузка …

Связанные

Лучшее соотношение цены и качества теплый водяной пол — Выгодные предложения на теплый водяной пол от мировых продавцов теплого водяного пола

Отличные новости !!! Вы попали в нужное место для теплого водяного пола.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, которые предлагают быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот верхний теплый водяной пол в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что купили свой теплый пол на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в теплом водяном полу и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести теплый водяной пол по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

A Метод расчета ударного давления плескания, оказываемого на крышу пассивного резервуара для хранения воды AP1000

В верхней части защитной оболочки AP1000 установлен большой резервуар для хранения воды, который может обеспечивать пассивное охлаждение. В экстремальных условиях покачивание свободной поверхности резервуара может ударить по крыше при длительном землетрясении.Для оценки безопасности конструкции необходимо рассчитать ударное давление, вызванное плесканием воды. Поскольку колебание крыши связано с сильным нелинейным явлением, в настоящее время немного сложно рассчитать такое давление теоретическим или численным методом. Но это применимо для расчета высоты выплескивания в резервуаре без крыши. В данной статье был предложен упрощенный метод расчета ударного давления с использованием высоты колеблющейся волны, в котором мы сначала отметили положение высоты крыши, затем произвели колебания в резервуаре без крыши и зарегистрировали максимальную высоту волны, и наконец, расценивается приблизительно разница между максимальной высотой волны и высотой крыши как напор ударного давления.Мы также разработали эксперимент, чтобы проверить этот метод. Результат эксперимента показал, что этот метод переоценил ударное давление с определенной погрешностью не более 35%. Проведя эксперимент, делаем вывод, что этот метод консервативен и применим для инженерного проектирования.

1. Введение

Как основной радиатор реактора AP1000, пассивная система охлаждения (PCS) является ключевым оборудованием для обеспечения безопасности атомной электростанции. Большой резервуар для хранения воды, установленный в верхней части защитной оболочки AP1000, может обеспечивать большое количество воды для пассивного охлаждения.В экстремальных условиях раскачивание свободной поверхности резервуара может ударить по крыше и нарушить целостность конструкции при длительном землетрясении. Для оценки безопасности конструкции необходимо рассчитать ударное давление, вызванное плесканием воды.

Так как раскачивание крыши связано с сильно нелинейным явлением, расчет ударного давления теоретическим или численным методом в настоящее время затруднен. Ибрагим [1] сосредоточился на двухмерном резервуаре с простой геометрией для решения линейных задач о плескании с использованием аналитических методов.Численная модель, использующая метод конечных элементов, была представлена ​​Pal et al. [2] для изучения линейного поведения цилиндрических резервуаров. Чоун и Юн [3] использовали потенциал скорости и линейную теорию водных волн, чтобы разложить поверхностную волну на несколько форм. Существует несколько сложных методов решения проблем нелинейного всплескивания. Ли и др. [4] использовали улучшенный метод материальной точки (MPM) для прогнозирования силы удара жидкости с помощью контактного алгоритма. Для проверки результатов моделирования были предложены эксперименты по выплескиванию жидкости в частично обводненном квадратном резервуаре.Eswaran et al. [5] предложил численный метод, основанный на методах объема жидкости (VOF) с произвольной лагранжевой-эйлеровой формулировкой (ALE) для анализа резервуаров с перегородками и без перегородок с нелинейным поведением качания. Однако эти исследования обычно справедливы для простых случаев с линейной или слабонелинейной динамикой плескания жидкости.

Но это применимо для расчета высоты выплескивания в резервуаре без крыши. Fujita et al. [6] использовали теорию потенциала скорости для анализа плескания жидкости в кольцевой области более сложных соосных круговых цилиндров.Получены формулы для максимальной высоты волны () на стенке оболочки и максимального давления () на свободной поверхности. Что еще более интересно, корреляция между максимальной высотой волны и максимальным давлением была получена из уравнения (34) в их исследовании. Virella et al. [7] использовали пакет конечных элементов ABAQUS для исследования амплитуды волн на свободной поверхности и распределения давления в стенках резервуара с помощью моделей как линейной, так и нелинейной теории волн. Наяк и Бисвал [8] использовали метод конечных элементов (МКЭ), основанный на взвешенной невязке Галеркина, для решения уравнения Лапласа с нелинейными граничными условиями.Высота волны нелинейного покачивания была проверена на точность.

Кроме того, ударное давление является важным параметром при оценке безопасности инженерного проектирования. Исследователи провели крупномасштабные эксперименты по исследованию ударного давления [9–12].

Как упоминалось выше, имеющиеся исследования в основном сосредоточены на характеристиках качания прямоугольных резервуаров с простой геометрией. Однако, учитывая особую конструкцию PCCWST, представляющего собой соосный круговой цилиндр с наклонным дном, трудно получить аналитические выражения для прогнозирования собственных режимов и движения жидкости.Более того, численные и аналитические методы для точного описания ударного давления при скачке усложняются из-за значительного явления нелинейности. В данной статье предложен упрощенный метод расчета ударного давления с использованием высоты колеблющейся волны. Более того, для проверки этого метода был поставлен эксперимент.

2. Метод расчета

Покачивание водной поверхности в резервуаре может повлиять на крышу при длительном землетрясении, поэтому необходимо прогнозировать ударное давление.Из-за очевидного нелинейного поведения, вызванного сложными явлениями покачивания, был предложен упрощенный метод расчета ударного давления с использованием высоты колеблющейся волны, в котором мы сначала отметили положение высоты крыши, сплошной широкой линией, показанной на Рисунке 1, затем произвел покачивание в резервуаре без крыши и зарегистрировал максимальную высоту волны, которая может быть показана в виде наклонной линии на Рисунке 1, и, наконец, расценила приблизительно разницу между максимальной высотой волны и высотой крыши как напор ударного давления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *