Содержание

Основные технические параметры электросчетчиков, которые нужно знать современному потребителю.

Электросчетчики в доме — доступно о сложных бытовых приборах в одной статье.

Электрический счетчик — электроизмерительный прибор, предназначенный для учета расхода электрической энергии переменного или постоянного тока, которая измеряется в кВт/ч или А/ч.

Электросчетчики применяются там, где осуществляется легальное потребление электроэнергии и есть возможность экономить деньги, отслеживая ее потребление за определенный промежуток времени.

Говоря об области применения счетчиков, то стоит отметить, что однофазные устройства учета электроэнергии находят свое применение в бытовых сетях, в то время как трехфазные электросчетчики востребованы в составе электролиний трехфазного тока, которые могут использоваться как в жилых зданиях, так и на объектах промышленности, в электроустановках административных, жилых и общественных зданий, производственных помещений,  коттеджей, дач, магазинов, гаражных кооперативов и т.п. при снабжении потребителей электроэнергии от трехфазной электросети.

Разделяются все счетчики электроэнергии по следующим различным признакам:
-По принципу работы (конструктивному исполнению) или сказать по-другому, по типу измерительной системы счетчики разделяются на индукционные (механические) и электронные. Соответственно устройство электросчетчика может быть как относительно простым (обычный механический), так и весьма сложным – в случае с электронным счетчиком.

Индукционные электросчётчики – это по большому счёту электрический двигатель переменного тока малой мощности, главный элемент которого – проводящий диск. Диск находится между токовой обмоткой и обмоткой напряжения и крутится пропорционально потребляемому количеству электроэнергии. Единица измерения в индукционных однофазных электросчётчиках – киловатт-часы.

Индукционный счетчик — принцип его работы основан на воздействии магнитного поля неподвижных катушек, по обмоткам которых протекает ток, на подвижный элемент – диск.

Вращение диска мы и наблюдаем в стеклянном окошке счетчика. При этом количество оборотов диска пропорционально расходу электроэнергии.
Такие счетчики отличаются низкой стоимостью, а также достаточно высоким качеством и надежностью.
Среди минусов можно отметить:
Плохая (почти никакая) защита от воровства электроэнергии
Относительно низкий класс точности (высокая погрешность)
Низкая функциональность (опциональность).

Будучи самыми распространёнными, такого рода счётчики далеко не совершенны и не очень точны. Класс их точности составляет 2,0-2,5 – крайняя граница допустимых значений по современным ГОСТам. Кроме того, индукционные однофазные счётчики недолговечны (срок их службы – 16 лет), т.к. со временем межповерочный интервал постоянно уменьшается из-за изнашивания опор проводящего диска, и, несмотря на все старания заводов-изготовителей, существенно улучшить индукционные однофазные счётчики не удаётся.

Впрочем, однофазные счётчики индукционного типа до сих пор используются достаточно часто, как в быту, так и на производстве. Некоторые разновидности таких однофазных электросчётчиков даже предусматривают их использование при организации автоматизированной системы контроля и учета электроэнергии (АСКУЭ).
Ясно одно: индукционные счётчики электроэнергии, как однофазные, так и трёхфазные, устарели и должны быть заменены более прогрессивными и точными приборами. Ко всему прочему, индукционные счётчики ещё и малофункциональны: не позволяют учитывать несколько тарифных планов и снимать показания дистанционно. Производители уже разработали новые, прогрессивные модели электросчётчиков. Это микропроцессорные и электронные счётчики.


Электронный (цифровой) счетчик – современное средство учета электроэнергии. Электронные электросчетчики предназначены для эксплуатации внутри помещений. Они имеют – встроенный цифровой интерфейс и встроенный тарификатор. Электронные счётчики обеспечивают высокую точность измерений в соответствии с международными (IEC) и межгосударственными (ГОСТ) стандартами и выполняют ряд дополнительных функций. В счётчиках используются современные достижения микроэлектроники и цифровые методы обработки сигналов.

Несмотря на высокую (по сравнению с механическим счетчиком) стоимость такие счетчики обладают хорошими техническими параметрами и приличными сервисными функциями.
Характерные признаки:
Высокий класс точности
Долговечность, отсутствие подвижных деталей
Увеличенный межповерочный интервал
Возможность реализации многотарифной системы учета
Возможность создания автоматизированной системы учета потребляемой энергии (АСКУЭ)
Наличие внутренней памяти для хранения информации по потребленной электроэнергии.
Работает электронный счетчик по принципу преобразования активной мощности в последовательность импульсов, которые подсчитывает специальный микроконтроллер.
При этом количество импульсов прямо пропорционально потребляемой (измеряемой) электроэнергии.

Электронный многотарифный счетчик может обеспечивать учет активной и реактивной электроэнергии в одно- или многотарифном  режимах суммарно по всем фазам или может быть учёт активной энергии в каждой фазе отдельно. На жидко-кристалическом дисплее индицируется – значения активной и реактивной электрической энергии, измерение мгновенных значений активной, реактивной и полной мощности по каждой фазе и по сумме фаз, измерение по каждой фазе – тока, напряжения, частоты, cos ф, углов между фазными напряжениями.  Поддерживает передачу результатов измерений потребленной энергии по силовой сети, по интерфейсам – CAN, RS-485 может передаваться вся доступная информация. Поддерживает программирование счётчика в режим суммирования фаз «по модулю» для предотвращения хищения электроэнергии при нарушении фазировки подключения цепей электросчётчика,  можно корректировать внутренние часы электросчетчика.

-По типу электросети:
Однофазные
Трехфазные

Электросчетчики однофазные используются в однофазных двухпроводных сетях напряжением 0,4/ 0,23 кВ. Основное их применение – учет расхода электроэнергии в квартирах или частных домах.
Изготавливаются счетчики на напряжение 220 (или 127) вольт, номинальный ток — 5, 10, 20, 40, 60 А. Устанавливаются счетчики на вводе и размещаются в этажных (квартирных) щитах.

Электросчетчики трехфазные предназначены для трехфазных трехпроводных или четырехпроводных сетей.
И если с однофазными счетчиками все просто и понятно, то трехфазные приборы требуют расширенного описания, поскольку они используются в электроустановках, работающих на трехфазном токе.
Трехфазные счетчики прямого (непосредственного) включения подсоединяются к сети напрямую, без дополнительных приборов – трансформаторов тока.
Номинальный ток изготовляемых счетчиков прямого включения — 5, 10, 20, 30, 50, 100А.
Учет потребленной энергии определяется путем вычитания первоначального показания электросчетчика (Пн) из конечного показания (Пк):
Э = Пк — Пн
Однако бывают ситуации, когда электроустановка потребляет значительный ток и счетчик прямого включения такой ток через себя пропустить не сможет. Поэтому в таких случаях используют подключение электросчетчиков через измерительные трансформаторы тока (ТТ).
Основное назначение ТТ – уменьшить ток до таких значений, при которых счетчик будет нормально функционировать.
Расчет потребленной энергии здесь определяется также вычитанием начальных показаний из конечных и дополнительно – умножением полученной разницы показаний на коэффициент трансформации (Кт) трансформаторов тока:
Э = (Пк — Пн)*Кт
Определить какой коэффициент трансформации у ТТ можно по данным на шильдике самого трансформатора.
Например, надпись 150/5 на ТТ означает, что первичная обмотка данного трансформатора рассчитана на ток 150А, а вторичная на 5А.
Из этого соотношения мы и получаем коэффициент трансформации, равный 30. Другими словами — ТТ уменьшает первичный ток в 30 раз.
В свою очередь трехфазные счетчики различаются:
-По способу включения в сеть — прямого (непосредственного) включения и трансформаторного включения (косвенное и полукосвенное включение).
-По роду измеряемой мощности — счетчики активной мощности и счетчики реактивной мощности.
-По количеству тарифов — однотарифные и многотарифные.
-По классу точности.
-По типу интерфейса связи (для электронных счетчиков).


Класс точности – основной технический параметр электросчетчика. Он указывает на уровень погрешности измерений прибора. До середины 90-х годов все устанавливаемые в жилых домах счетчики имели класс точности 2.5 (максимально допустимый уровень погрешности составлял 2,5%). В 1996 году был введен новый стандарт точности приборов учета, используемых в бытовом секторе – 2.0. Именно это стало толчком к повсеместной замене индукционных счетчиков на более точные электронные, с классом точности 2.0, 1.0, 0.5 и 0.2.

Также важным техническим параметром электросчетчика является тарифность. До недавнего времени все счетчики электрической энергии, применяемые в быту, были однотарифными. Функциональные возможности современных счетчиков позволяют вести учет электроэнергии по зонам суток и даже по временам года. Двухтарифные счетчики дают возможность платить за энергию меньше – в установленное время они автоматически переключаются на ночной тариф, который почти вдвое ниже дневного. 

Согласно действующему постановлению комиссии по регулированию процессов в энергетической сфере (постановление №498 от 23.04.2012) в Украине действует две системы: двухзонная и трехзонная

.

Двухзонная:

 — Ночной (период минимальной нагрузки в энергосистеме) с 23-00 до 07-00 часов. Потребитель оплачивает 0,7 тарифа;

 — Полный в другое время суток.

Трехзонная:

 — 1,5 тарифа во время максимальной нагрузки в энергосистеме: период времени – с 08-00 до 11-00 и с 20-00 до 22-00 часов;

 — полный тариф при средней загруженности энергосистемы: с 07-00 до 08-00, с 11-00 до 20-00 и с 22-00 до 23-00 часов;

 — 0,4 тарифа в часы минимальной нагрузки энергосистемы – с 23-00 и до 07-00 часов.

 Самые современные модели электросчетчиков могут перестраиваться на любую тарифную политику. Например, если энергетики решат сделать скидки по выходным, то воспользоваться ими смогут лишь владельцы счетчиков, способных поддерживать несколько тарифов. Тарифы и время режимов вводятся представителем электроснабжающей организации, которые ставят многотарифный электросчетчик на учет, пломбируют его и дают разрешение на использование.

Распространение многотарифного учета позволяет значительно снизить производственные издержки. Сегодня все новые дома еще на стадии строительства оборудуются автоматизированными системами учета электроэнергии, которые предоставляют жителям возможность производить учет электроэнергии дифференцированно по времени суток. В эту систему входят не только двухтарифные счетчики, но и аппаратура автоматики, которая позволяет программировать электросчетчики и снимать с них показания дистанционно. Если дом не оборудован автоматизированной системой учета, то можно установить многотарифный электросчетчик с тарификатором.

С течением времени, из-за износа материалов, класс точности электросчетчика меняется. Наступает время, когда электросчетчик необходимо повторно проверить на точность показаний. Период с момента первичной поверки (обычно с даты выпуска) до следующей поверки называется межповерочным интервалом. Исчисляется межповерочный интервал в годах и указывается в паспорте электросчетчика. Современные электронные электросчетчики уже не уступают в длительности межповерочного интервала индукционным счетчикам, что связано с применением более качественных комплектующих, и не только из Азии.  Продолжительность межповерочного интервала связана со сроком эксплуатации прибора и с гарантией на него.  Немаловажное значение имеет возможность произвести гарантийный и послегарантийный ремонт.

Чтобы проверить правильность начисления оплаты в современном электросчетчике, уже не нужно искать старые квитанции об оплате – счетчик с соответствующей функцией покажет, сколько в каком месяце и по какому тарифу потрачено электроэнергии. Вычислять в столбик разницу между показаниями за месяц уже не нужно, электросчетчик способен сам это сделать.
В настоящее время существует большой выбор электросчетчиков разных производителей. Каждый из них имеет свои особые характеристики, разный набор функциональных возможностей и, соответственно, стоимость.
Конечно, не всем нужны такие опции, некоторые хотят простой, надежный и точный прибор по минимальной цене. Из широкого ассортимента электросчетчиков  можно выбрать именно тот, который больше всего подходит, благо, недостатка в выборе нет.

Немного о поверке счетчиков
Электрические счетчики, как и многие измерительные приборы, нуждаются периодической поверке (калибровке). Правильнее было бы сказать – подлежат обязательной поверке, поскольку отнесены к Сфере государственного регулирования обеспечения единства измерений.
Основная цель такой процедуры – подтверждение правильности (достоверности) измерений и возможности дальнейшего использования прибора по назначению. Поверка осуществляется в аккредитованной государством метрологической организации в установленные сроки.
Существует такая характеристика электросчетчика как межповерочный интервал (МПИ) – это интервал времени, после окончания которого требуется очередная поверка счетчика. Теоретически — чем больше интервал, тем выше качество прибора.
Начальная (первичная) поверка проводится на заводе-изготовителе и указывается в паспорте электросчетчика – с этой даты начинается отсчет МПИ.
Сроки поверки:
Индукционный однофазный счетчик – 16 лет
Электронный – от 8 до 16 лет
Трехфазный счетчик – от 6 до 8 лет, современные электронные модели могут иметь МПИ 16 лет
Счетчики с классом точности 0,5 – 4 года

Электрические схемы подключения электросчетчиков

Электрическая схема подключения однофазного электросчетчика


Фазный провод и токовая катушка обозначены красным цветом; нулевой провод и катушка напряжения обозначены синим цветом.


Электрическая схема подключения трехфазного электросчетчика прямого действия (подключения)


Фаза «А» обозначена желтым цветом, фаза «В» — зеленым, фаза «С» — красным, нулевой провод «N» — синим цветом; L1, L2, L3 — токовые катушки; L4, L5, L6 — катушки напряжения; 2, 5, 8 — винт напряжения; 1, 3, 4, 6, 7, 9, 10, 11 — клеммы для подключения электропроводки к счетчику.


Электрическая схема подключения трехфазного электросчетчика через трансформаторы тока.

РАСЧЕТ МОЩНОСТИ НАГРУЗКИ
Иногда возникает необходимость узнать, сколько потребляют отдельные электроприборы  в данный момент времени. Для этого необходимо отключить ненужные приборы, включить нужные. Далее посчитать количество оборотов диска или количество импульсов за одну минуту в зависимости от типа счетчика и рассчитать по формуле:
W = (n * 60)/(Imp * t), кВт

где W — потребляемая мощность за час, n — количество импульсов или оборотов диска за определенный период времени, Imp — количество импульсов или оборотов диска, соответствующих 1 кВт*ч, t — время в минутах.

Как выбрать счетчик электроэнергии | Строительный портал

Необходимость замены электрических счетчиков возникает не очень часто. Большинство производителей гарантирует до 16 лет работы прибора без отклонений от точности показаний. Но когда возникает необходимость купить счетчик электроэнергии, вместе с ней возникает множество вопросов о том, как сделать правильный выбор. Для того чтобы лучше ориентироваться во всех предложенных вариантах, необходимо понимать саму суть работы электросчетчика и все возможные модификации этого прибора.

Оглавление:

  1. Индукционный счетчик
  2. Электронный счетчик
  3. Технические характеристики счетчиков
  4. Критерии выбора электросчетчика
  5. Признанные торговые марки электросчетчиков

Индукционный счетчик

  • Первая характеристика приборов учета электроэнергии, которая делит их на две группы – это принцип работы. По данному признаку счетчики электроэнергии делятся на механические (индукционные) и электронные. Работа индукционного электросчетчика базируется на механике. В его конструкции есть две основные катушки – напряжения и тока. Обе эти детали излучают магнитное поле, которое воздействует на металлический диск и крутит его. Скорость вращения этого диска находится в прямой зависимости от интенсивности напряжения катушек. Вращаясь, диск крутит колесики с цифрами, которые и указывают количество израсходованной электроэнергии.

  • Индукционные приборы учета расхода электроэнергии имеют как недостатки, так и преимущества, но все же используются очень широко. Возможно причина этому возраст самой конструкции – электронные приборы появились относительно недавно. А возможно то, что на индукционный счетчик электроэнергии цена значительно ниже, чем на электронный.
  • Преимущества механических приборов – невысокая цена и длительный срок службы. Даже спустя 50 лет после установки, устройство зачастую продолжает функционировать в рамках заданного класса точности. Недостаток в том, что изначально класс точности не опускается ниже показателя в 2%.

Электронный счетчик

Электронный счетчик по электроэнергии работает совершенно по другому принципу. В его конструкции совершенно нет механических составляющих, ток напрямую поступает на полупроводники и микросхемы, которые и ведут учет израсходованной электроэнергии. Вся информация в устройстве содержится исключительно в цифровом виде и также поступает на электронное табло, которым он снабжен.

Преимуществ у электронного прибора гораздо больше, чем у механического. Они составляют целый список:

  • Небольшие размеры устройства.
  • Возможность многотарифного учета показаний.
  • Простой переход на более высокий класс точности.
  • Наличие интерфейса, который позволяет встроить счетчик в автоматизированную систему контроля расхода электроэнергии.
  • Простое снятие показаний со счетчика.

Недостатков у электронных устройств подсчитывания расхода энергии всего два – более высокая цена и низкий уровень надежности. Объясняется это так – чем проще механизм, чем меньше в нем сложных микросхем, тем проще его эксплуатация и ремонт.

Технические характеристики счетчиков

Приведенная ниже схема наглядно демонстрирует классификацию приборов учета электроэнергии разных типов. Первое разделение счетчиков проходит по типу сети, к которой они подключаются. Здесь выделяют однофазные устройства и трехфазные.

  • Счетчик электроэнергии однофазный применяется в сетях, которые имеют только два провода и одну фазу. В данном случае учитывается не только количество проводов, но и общая нагрузка на сеть. Однофазное устройство справляется с потреблением тока до 10 кВ и выдает напряжение в стандартные 220 В. Потому именно такие счетчики используют в обычный частных домовладениях и квартирах. Однофазный счетчик применяется в трехфазной сети только в том варианте, когда на каждую фазу установлено отдельное устройство, то есть в таком случае счетчиков должно быть 3.
  • Счетчик электроэнергии трехфазный устанавливают, соответственно, на трехфазную сеть. Необходимость в таком оборудовании возникает на предприятиях с большим потреблением электроэнергии, в общих щитовых на многоквартирный дом и т.д. В частных домах устанавливается только в том случае, если есть в наличии приборы с большим потреблением энергии, например, регулярно используется сварочный аппарат. Трехфазная система дает на выходе 380 В и предохраняет помещение от перепадов напряжения.
  • Следующий фактор, по которому классифицируют приборы измерения уровня энергопотребления – тарифность. Производители предлагают приобрести как однотарифный так и двухтарифный счетчик электроэнергии. Существуют также многотарифные модификации. Суть данного устройства в том, что оно позволяет измерять количество потребленного тока по заданным тарифам в разное время суток. Такой подход к подсчетам позволяет значительно сократить расходы.
  • Еще одна характеристика электросчетчиков – тип энергии, замеры которой производятся. Приборы с одной фазой измеряют только количество проходящей через устройство активной энергии. Трехфазные работают по нескольким направлениям, они измеряют активную энергию, реактивную, а также направление потоков. Данные измерения помогают уменьшить затраты на электроэнергию, а также повысить ее качество, так как происходит компенсация количества реактивной энергии. Особенно полезно данное дополнение для промышленных зданий, в которых подключение электросчетчика проходит через трансформатор.
  • Если говорить об экономии электроэнергии, то сократить ее расход позволяет не только правильно подобранное и установленное оборудование, но и устанавливаемый на счетчик электроэнергии магнит. Данное устройство подходит для индикаторных приборов, оно просто замедляет или полностью останавливает движение вращающихся металлических частей. То есть ток продолжает поступать через счетчик в помещение, но учет его не ведется. Используя это, или другие подобные средства, следует помнить, что данный способ не является законным и облагается штрафами.

Критерии выбора электросчетчика

Разобравшись с основами устройства и классификацией электросчетчиков, приступают к изучению параметров их выбора. Чтобы приобрести оптимальный вариант прибора, необходимо знать некоторые данные об электрической сети в помещении, для которого он покупается, а также параметры самого прибора.

  • Приобрести счетчик на одну фазу или на три. Необходимая фазность прибора напрямую зависит от типа электрической сети в помещении. Чтобы получить эту информацию, не нужно обращаться в органы энергонадзора, достаточно внимательно изучить панель старого счетчика. Если на ней указаны цифры 220/230 В, то необходим однофазный прибор. Если же на ней стоит отметка 220/380 или 230/400 В, то необходим прибор для трех фаз. Для изменения фазности сети обращаются в отвечающую за энергоснабжение организацию и оформляют необходимые документы.
  • Номинальный ток прибора. В основном все посчитывающие расход электрического тока устройства функционируют в интервале нагрузки не более 50-60 А и мощности 15 кВт. Стандартные счетчики для частных домов имеют именно такой показатель номинального тока. Но если же характеристики электрической сети превышают потребление в 15 кВт, то необходим прибор с максимальной нагрузкой в 100 А. Эти данные указываются на вводном автомате помещения. Если на панели указана цифра до 40 А, то необходим счетчик с показателем 60 А. Если же данная цифра превышает значение в 40, то и прибор приобрести необходимо на 100 А. Не стоит устанавливать устройство с большим показателем, чем того требует электрическая сеть, так как это вызовет подозрения у отвечающей за энергоснабжение организации и счетчик придется заменить.
  • Прибор с одним тарифом или с несколькими. Данный критерий рассматривается в индивидуальном порядке. Зачастую поставляющие энергию компании предоставляют разную цену на ночной и дневной тариф. Необходимо узнать, есть ли возможность рассчитываться таким образом, а затем уже принимать решение об установке многотарифного счетчика. Если тарификация в ночное и дневное время одинакова, то многотарифный счетчик за электроэнергию расходы не сократит и будет попросту бесполезен.
  • Устройство с разными способами крепления. Данный показатель не влияет на работоспособность самого устройства, но поможет сделать процедуру его монтажа более простой. Два самых распространенных способа крепления – три винта или дин-рейка. Первый способ используется в обычных электрических щитах и встречается на всех индикаторных счетчиках и на некоторых электронных. Крепление с помощью дин-рейки используется только в электронных механизмах. Если приобретен прибор под рейку, то для нее необходимо купить и сам крепежный механизм, так как в стандартных щитовых его наличие не предусмотрено.
  • Наличие дополнительных функций. Некоторые модели электронных счетчиков имеют различные дополнительные функции. Среди них значится вывод на экран информации о токе, напряжении и частоте. Учет показаний счетчика в момент отсутствия в сети напряжения, подсветка и многое другое. Данные функции не сказываются на работоспособности прибора, но делают его эксплуатацию более удобной. Потому при покупке электрического счетчика на их наличие стоит обратить внимание.
  • Класс точности прибора. Также следует обратить внимание на класс точности счетчика, так как возможные погрешности не играют на руку потребителю. Бытовые приборы данный показатель имеют на уровне 2,0, что является для них наиболее оптимальным. Счетчики с классом от 0,5 подходят для быстропеременных нагрузок и устанавливаются в основном в промышленных зданиях.

Признанные торговые марки электросчетчиков

Бытовые счетчики электроэнергии – это один из тех приборов, за который не стоит переплачивать, покупая импортный товар. Зарубежные производители предлагают продукцию высокого качества, однако существуют российские торговые марки, которые предлагают приборы такого же класса, но за более умеренную цену. Российские счетчики сертифицированы и соответствуют всем стандартам качества, а точнее ГОСТам. Среди множества наименований выделяется несколько торговых марок, которые неоднократно тестировались различными компаниями и широко применяются на промышленных предприятиях и в частных домах.

  • Энергомера. Основана компания была в Ставрополе, сейчас же изготовление продукции проходит на семи заводах, расположенных на территории России, Белоруссии и Украины. Основная специализация компании – приборы для учета расхода энергопотребления. Компания предлагает широкий ассортимент механических и электронных приборов. Цена на продукцию варьирует от 13 до 330 EUR. Особо выделяются такие серии:
    • Прибор с одной фазой и одним тарифом. Марка СЕ101, СЕ200, ЦЭ6807.
    • Прибор с одной фазой и несколькими тарифами. Марка СЕ102, СЕ201, СЕ205, СЕ208
    • Прибор с тремя фазами и одним тарифом. Марка СЕ300, СЕ302, ЦЭ6803, ЦЭ6804.
    • Прибор с тремя фазами и несколькими тарифами. Марка СЕ301, СЕ303, СЕ304, СЕ305, СЕ306, ЦЭ6850.

  • Счетчики «Меркурий» от компании Инкотекс. Первый завод был основан в Москве, сейчас же мощности распределены на 7 заводов, 3 из которых находятся за границей Российской Федерации. Компания занимается разработкой и производством различного электронного оборудования, представлены в ассортименте и счетчики электроэнергии. Основная направленность работы – высокотехнологическое наукоемкое оборудование. Под торговой маркой «Меркурий» представлены все возможные классы электросчетчиков.

  • Московский завод измерительных приборов – МЗЭП. Основан в середине прошлого столетия. В ассортименте представлены не только электросчетчики, но и различная специфическая радиоаппаратура. Под торговой маркой выпускаются как электронные, так и механические счетчики электроэнергии. Индукционные счетчики представлены моделью СО-505, которая имеет одну фазу и один тариф. Цены на продукцию данной компании варьируют в диапазоне от 13 до 85 EUR. Электронные модели представлены следующими марками:
    • Одна фаза, один тариф – СОЭ-52.
    • Одна фаза, несколько тарифов – СОЭ-55.
    • Три фазы, несколько тарифов – СОЭ-561, 565.

Ориентируясь на зарекомендовавших себя на рынке производителей, стоит также обратить внимание на производственные компании, которые работают неподалеку. Цены на их продукцию, как правило, оказываются гораздо ниже, а качество на том же уровне, что и у проверенных торговых марок. Также стоит поинтересоваться ценами на счетчики в организации, которая занимается поставками электроэнергии. Зачастую такие учреждения закупают оборудование оптом и предлагают своим потребителям весьма приятные цены на него.

Классификация и типы счетчиков электроэнергии

классификация счетчиков электроэнергии

Счетчики электрической энергии можно классифицировать по следующим принципам:

1. По принципу действия:

  • индукционные
  • электронные (статические)

2. По классу точности счетчики:

  • рабочие
  • образцовые

Класс точности счетчика – это его наибольшая допустимая относительная погрешность, выраженная в процентах.

В соответствии с ГОСТ Р 52320-2005, ГОСТ Р 52321-2005, ГОСТ Р 52322-2005, ГОСТ Р 52323-2005, счетчики активной энергии должны изготавливаются классов точности 0,2S; 0,2; 0,5S; 0,5; 1,0; 2,0 счетчики реактивной энергии — классов точности 0,5; 1,0; 2,0 (ГОСТ Р 5242520-05).

3. По подключению в электрические сети:

  • однофазные (1ф 2Пр однофазный двухпроводный)
  • трехфазные – трехпроводные (3ф 3Пр трехфазный трехпроводной)
  • трехфазные – четырехпроводные (3ф 4Пр трехфазный четырехпроводной)

счетчики электроэнергии

4. По количеству измерительных элементов:

  • одноэлементные (для однофазных сетей (1ф 2Пр))
  • двухэлементные (для 3-х фазных сетей с равномерной нагр (3ф 3Пр))
  • трехэлементные (для трехфазных сетей (3ф 4Пр))

5. По принципу включения в электрические цепи:

  • прямого включения счетчика
  • трансформаторного включения счетчика:
  • подключения счетчика к трехфазной 4-проводной сети с помощью трех трансформаторов напряжения и трех трансформаторов тока
  • подключения счетчика к трехфазной 3-проводной сети с помощью трех трансформаторов напряжения и двух трансформаторов тока
  • подключения счетчика к трехфазной 3-проводной сети с помощью двух трансформаторов напряжения и двух трансформаторов тока
Программа энергосбережения • Энергетический паспорт

Энергетическое обследование • Программа энергосбережения • Консультация

6. По конструкции:

  • простые
  • многофункциональные

7. По количеству тарифов:

  • однотарифные
  • многотарифные

8. По видам измеряемой энергии и мощности:

  • активной электроэнергии (мощности)
  • реактивной электроэнергии (мощности)
  • активно-реактивной электроэнергии (мощности)

Активная мощность для 1-фазного счетчика, Вт: PА1ф2 = UфICosφ

Активная мощность для 3-фазного двухэлементного счетчика, включенного в 3-х проводную сеть, Вт: PА3ф3Пр = UАВIАCosφ1(UАВIА )+ UСВIСCosφ2(UСВIС)

Активная мощность для 3-фазного трехэлементного счетчика, включенного в 4-х проводную сеть, Вт: P3ф4Пр = UАIАCosφ1(UАIА) + UвIвCosφ2(UвIв) + UсIсCosφ3(UсIс)

Типы счетчиков:

Электромеханический счетчик – счетчик, в котором токи, протекающие в неподвижных катушках, взаимодействуют с токами, индуцируемыми в подвижном элементе, что приводит его в движение, при котором число оборотов пропорционально измеряемой энергии.

Электромеханический счетчик

Например:

Однофазный электросчетчик СО-505, класс точности 2,0. Однофазный электросчетчик СО-1, класс точности 2,5.
Трехфазный электросчетчик СА3У-И670, класс точности 2,0. Электросчетчик СР4У-И673, класс точности 2,0.

Статический счетчик– счетчик, в котором ток и напряжение воздействуют на твердотельные (электронные) элементы для создания на выходе импульсов, число которых пропорционально измеряемой энергии.

Статический счетчик

На пример, однофазный электросчетчик Меркурий 201 или Меркурий 200.02, класс точности – 2,0. Или терхфазный электросчетчик Меркурий 230А, класс точности 1,0. Трехфазный электросчетчик АЛЬФА А1R, класс точности 0,5S.

Многотарифный счетчик – счетчик электрической энергии, снабженный набором счетных механизмов, каждый из которых работает в установленные интервалы времени, соответствующие различным тарифам.

Многотарифный счетчик

Эталонный счетчик – счетчик, предназначенный для передачи размера единицы электрической энергии, специально спроектированный и используемый для получения наивысшей точности и стабильности в контролируемых условиях.

Эталонный счетчик

Основные понятия, термины и определения

Счетный механизм (отсчетное устройство): Часть счетчика, которая позволяет определить измеренное значение величины.

Отсчетное устройство может быть механическим, электромеханическим или электронным устройством, содержащим как запоминающее устройство, так и дисплей, которые хранят или отображают информацию.

Измерительный элемент – часть счетчика, создающая выходные сигналы, пропорциональные измеряемой энергии.

Цепь тока: Внутренние соединения счетчика и часть измерительного элемента, по которым протекает ток цепи, к которой подключен счетчик.

Экспресс энергоаудит

Энергоаудит • Энергетический паспорт • Программа энергосбережения

Цепь напряжения: Внутренние соединения счетчика, часть измерительного элемента и, в случае статических счетчиков, часть источника питания, питаемые напряжением цепи, к которой подключен счетчик.

Электросчетчик непосредственного включения (или прямого включения): Как правило 3-х фазный электросчетчик, включаемый в 4-х проводную сеть, напряжением 380/220В, без использования измерительных трансформаторов тока и напряжения.

Трансформаторный счетчик – счетчик, предназначенный для включения через измерительные трансформаторы напряжения (ТН) и тока (ТТ) с заранее заданными коэффициентами трансформации.

Показания счетчика должны соответствовать значению энергии, прошедшей через первичную цепь измерительных трансформаторов.

Основные понятия учета электроэнергии

Коммерческий учет электроэнергии – учет электроэнергии для денежного расчета за нее

Технический учет электроэнергии – учет для контроля расхода электроэнергии внутри электростанций, подстанций, предприятий,  для расчета и анализа потерь электроэнергии в электрических сетях, а также для учета расхода электроэнергии на производственные нужды.

Счетчики электроэнергии

Счетчики, устанавливаемые для расчетного учета, называются расчетными счетчиками.

Счетчики, устанавливаемые для технического учета, называются счетчиками технического учета.

Счетчики, учитывающие активную электроэнергию, называются счетчиками активной энергии.

Счетчики, учитывающие реактивную электроэнергию за учетный период, называются счетчиками реактивной энергии.

Средство измерений – техническое устройство, предназначенное для измерений.

Измерительный комплекс средств учета электроэнергии  – совокупность устройств одного присоединения, предназначенных для измерения и учета электроэнергии: трансформаторы тока, трансформаторы напряжения, счетчики электрической энергии, линии связи.

Стартовый ток (чувствительность) – наименьшее значение тока, при котором начинается непрерывная регистрация показаний

Базовый ток – значение тока, являющееся исходным для установления требований к счетчику с непосредственным включением

Номинальный ток – значение тока, являющееся исходным для установления требований к счетчику, работающему от трансформатора

Максимальный ток – наибольшее значение тока, при котором счетчик удовлетворяет требованиям точности, установленным в стандарте ГОСТ Р 52320-2005.

Номинальное напряжение – значение напряжения, являющееся исходным при установлении требований к счетчику.

Технические требования к электросчетчикам

Общие требования:

  • Класс точности не хуже 0,5S
  • Соответствие требованиям ГОСТ Р (52320-2005,  52323-2005, 52425-2005)
  • Наличие сертификата об утверждении типа

Функциональные требования:

  • Измерение и учет активной и реактивной электроэнергии (непрерывный нарастающий итог), мощности в одном или двух направлениях (интервальные 30-и минутные приращения электроэнергии)
  • Хранение результатов измерений (профили нагрузки – не менее 35 суток) и информации о состоянии средств измерений
  • Наличие энергонезависимых часов, обеспечивающих ведение даты и времени (точность хода не хуже ±5,0 секунды в сутки с внешней синхронизацией, работающей в составе СОЕВ)
  • Ведение автоматической коррекции времени
  • Ведение автоматической самодиагностики с формированием обобщенного сигнала  в «Журнале событий»
  • Защиту от несанкционированного доступа к информации и программному обеспечению
  • Предоставление доступа к измеренным значениям параметров и «Журналам событий» со стороны УСПД или ИВК ЦСОД

Счетчики электроэнергии

В «Журнале событий» должны фиксироваться время и дата наступления следующих событий:

  • попытки несанкционированного доступа
  • факты связи со счетчиком, приведших к каким-либо изменениям данных
  • изменение текущих значений времени и даты при синхронизации времени
  • отклонение тока и напряжения в измерительных цепях от заданных пределов
  • отсутствие напряжения при наличии тока в измерительных цепях
  • перерывы питания

– Счетчик должен обеспечивать работоспособность в диапазоне температур, определенными условиями эксплуатации. (-40.. +550С)

– Средняя наработка на отказ не менее 35000 часов

– Межповерочный интервал – не менее 8 лет

Вас может заинтересовать:

Электрический счетчик энергии. Общие сведения

Нет никакой тайны в том, что электрическая энергия нуждается в учете. Эта задача возлагается на электрический счетчик. Измеряется электроэнергия в киловатт-часах – это означает, что электроприбор, имеющий потребляемую мощность 1000 Вт должен проработать один час, чтобы потратить 1 кВт-ч.

В наше время, перенасыщенное всевозможной электротехнической (и не только) продукцией, многообразие всевозможных моделей и видов электросчетчиков может ввести в ступор рядового покупателя. Счетчики на нашем рынке есть любые – обычные механические, электронные (цифровые), гибридные, просто навороченные и супер-точные.

Функциональность современных счетчиков также впечатляет – помимо обычного измерения мощности они могут учитывать тарифы на электроэнергию и параметры окружающей среды, отслеживать качество электроэнергии, а также имеют возможность удаленного доступа.

Электрический счетчик

   Электрический счетчик

В данной статье мы постараемся осветить некоторые вопросы, возникающие при выборе и подключении электросчетчика. Поскольку тема очень обширная, ряд узких вопросов может оказаться не затронутым. Поэтому не помешает лишний раз заглянуть в ПУЭ, Глава «Учет электроэнергии». Для продолжения темы нам предварительно нужно как-то разделить все счетчики на группы (типы, виды) по их различным характеристикам. Другими словами надо разобраться с классификацией электросчетчиков.

Основные характеристики счетчиков

Разделим все счетчики электроэнергии по их различным признакам:

По принципу работы (конструктивному исполнению):
  • Индукционные
  • Электронные
По типу электросети:
  • Однофазные
  • Трехфазные

   В свою очередь трехфазные счетчики различаются:

  • По способу включения в сеть — прямого (непосредственного) включения и трансформаторного включения (косвенное и полукосвенное включение)
  • По роду измеряемой мощности — счетчики активной мощности и счетчики реактивной мощности
По количеству тарифов: 
  • однатарифные
  • многотарифные
По классу точности
По типу интерфейса связи (для электронных счетчиков)

Различие по типу электросети

Основное различие счетчиков заключается во втором пункте, а именно, для какой электросети они разработаны – для однофазной или трехфазной. Электрический счетчик однофазный используются в однофазных двухпроводных сетях напряжением 0,4/ 0,23 кВ. Основное их применение – учет расхода электроэнергии в квартирах или частных домах. Изготавливаются счетчики на напряжение 220 (или 127) вольт, номинальный ток — 5, 10, 20, 40, 60 А. Устанавливаются счетчики на вводе и размещаются в этажных (квартирных) щитах.

Электрический счетчик трехфазный предназначен для трехфазных трехпроводных или четырехпроводных сетей. И если с однофазными счетчиками все просто и понятно, то трехфазные приборы требуют расширенного описания, поскольку они используются в электроустановках, работающих на трехфазном токе. Трехфазные счетчики прямого (непосредственного) включения подсоединяются к сети напрямую, без дополнительных приборов – трансформаторов тока. Номинальный ток изготовляемых счетчиков прямого включения — 5, 10, 20, 30, 50, 100А.

Учет потребленной энергии определяется путем вычитания первоначального показания электросчетчика (Пн) из конечного показания (Пк):

Э = Пк — Пн

Однако бывают ситуации, когда электроустановка потребляет значительный ток и счетчик прямого включения такой ток через себя пропустить не сможет. Поэтому в таких случаях используют подключение электросчетчиков через измерительные трансформаторы тока (ТТ). Основное назначение ТТ – уменьшить ток до таких значений, при которых счетчик будет нормально функционировать. Расчет потребленной энергии здесь определяется также вычитанием начальных показаний из конечных и дополнительно – умножением полученной разницы показаний на коэффициент трансформации (Кт) трансформаторов тока:

Э = (Пк — Пн)*Кт

Определить какой коэффициент трансформации у ТТ можно по данным на шильдике самого трансформатора. Например, надпись 150/5 на ТТ означает, что первичная обмотка данного трансформатора рассчитана на ток 150А, а вторичная на 5А. Из этого соотношения мы и получаем коэффициент трансформации, равный 30. Другими словами — ТТ уменьшает первичный ток в 30 раз.

Конструктивное исполнение счетчиков

По своей конструкции, или сказать по-другому, по типу измерительной системы счетчики разделяются на индукционные (механические) и электронные. Соответственно устройство электросчетчика может быть как относительно простым (обычный механический), так и весьма сложным – в случае с электронным счетчиком.

Индукционный счетчик — принцип его работы основан на воздействии магнитного поля неподвижных катушек, по обмоткам которых протекает ток, на подвижный элемент – диск. Вращение диска мы и наблюдаем в стеклянном окошке счетчика. При этом количество оборотов диска пропорционально расходу электроэнергии. Такие счетчики отличаются низкой стоимостью, а также достаточно высоким качеством и надежностью.

Среди минусов можно отметить:

  • Плохая (почти никакая) защита от воровства электроэнергии
  • Относительно низкий класс точности (высокая погрешность)
  • Низкая функциональность (опциональность)

Электронный (цифровой) счетчик – современное средство учета электроэнергии.

Несмотря на высокую (по сравнению с механическим счетчиком) стоимость такие счетчики обладают хорошими техническими параметрами и приличными сервисными функциями.

Характерные признаки:

  • Высокий класс точности
  • Долговечность, отсутствие подвижных деталей
  • Увеличенный межповерочный интервал
  • Возможность реализации многотарифной системы учета
  • Возможность создания автоматизированной системы учета потребляемой энергии (АСКУЭ)
  • Наличие внутренней памяти для хранения информации по потребленной электроэнергии

Работает электронный счетчик по принципу преобразования активной мощности в последовательность импульсов, которые подсчитывает специальный микроконтроллер. При этом количество импульсов прямо пропорционально потребляемой (измеряемой) электроэнергии.

Класс точности

Класс точности электрического счетчика — это его погрешность измерения. Если сказать точнее – наибольшая допустимая относительная погрешность, выражаемая в процентах. Сейчас повсеместно происходит замена устаревших счетчиков на более современные модели. В первую очередь это связано именно с неудовлетворительным классом точности старых электросчетчиков, а также с возросшими электрическими нагрузками. В связи с этим все счетчики с классом точности 2,5 должны быть заменены на счетчики с классом точности 2,0 (или 1,0).

Существующие классы точности:

  • Счетчики активной энергии — 0,2; 0,5; 1,0; 2,0
  • Счетчики реактивной энергии — 1,5; 2,0 и 3,0

Немного о поверке счетчиков

Электрический счетчик, как и многие измерительные приборы, нуждается в периодической поверке (калибровке). Правильнее было бы сказать – подлежит обязательной поверке. Основная цель такой процедуры – подтверждение правильности (достоверности) измерений и возможности дальнейшего использования прибора по назначению. Поверка осуществляется в аккредитованной государством метрологической организации в установленные сроки.

Существует такая характеристика электросчетчика как межповерочный интервал (МПИ) – это интервал времени, после окончания которого требуется очередная поверка счетчика. Теоретически — чем больше интервал, тем выше качество прибора. Начальная (первичная) поверка проводится на заводе-изготовителе и указывается в паспорте электросчетчика – с этой даты начинается отсчет МПИ.

Сроки поверки:

  • Индукционный однофазный счетчик – 16 лет
  • Электронный – от 8 до 16 лет
  • Трехфазный счетчик – от 6 до 8 лет, современные электронные модели могут иметь МПИ 16 лет
  • Счетчики с классом точности 0,5 – 4 года

На этом пока все. Следующая статья будет продолжением темы, и там мы разберемся со схемами подключения электросчетчиков.

 

Смотрите также по этой теме:

   Схемы подключения счетчиков электроэнергии.

   Электронные счетчики и система АСКУЭ. Дистанционный учет электроэнергии.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Информация, которая поможет правильно выбрать счетчик электроэнергии

Главная / Статьи / Современные счетчики электроэнергииfoto1

Счетчики электроэнергии – неотъемлемая часть современного электрооборудования. Показания счетчиков используются при проведении коммерческих расчетов за электроэнергию, а также в системах  технического учета, организуемого на предприятиях для решения  внутренних задач.

Номенклатура современных счетчиков электроэнергии огромна. Она включает и самые простые счетчики с  механическим отсчетным устройством, и многофункциональные приборы, обеспечивающие отображение текущих значений, а также запись в энергонезависимую память, хранение и передачу в автоматизированные системы большого числа параметров.

Ниже приводится условная классификация счетчиков электроэнергии, которая позволит, более предметно, ориентироваться в приборах учета, представленных на рынке.

Индукционные и электронные счетчики.

Так как индукционные счетчики не соответствуют требованиям нормативных документов  по классу точности, то в данном материале они рассматриваться не будут. Речь будет идти только об электронных счетчиках. 

Однофазные и трехфазные счетчики.

СЕ 101 R5.1 5(60)А В зависимости от количества подключаемых фаз счетчики бывают однофазными и трехфазными.
Однофазные счетчики эксплуатируются при номинальном напряжении сети 230В.
Трехфазные счетчики рассчитаны на номинальное напряжение 3х57,7/100В (фазное напряжение 57,7В, линейное – 100В) и 3х230/400В (фазное напряжение 230В, линейное – 400В). Однако существуют счетчики с расширенным диапазоном рабочих напряжений. Например, счетчик ЦЭ6850М-Ш31 (Концерн «Энергомера») работает в диапазоне номинальных фазных напряжений  57,7…220В. Счетчики ПСЧ-4ТМ.05МК (АО «НЗиФ») в диапазоне: 3х(57,7…115)/(100…200)В или 3х(120…230)/(208…400)В.

Однотарифные и многотарифные счетчики.

Однотарифные счетчики ведут сквозной учет электроэнергии вне зависимости от времени суток и дня недели. В ряде регионов нашей страны применяются комбинированные тарифы, когда электроэнергия в дневное время стоит дороже, чем в ночное. Также льготный тариф может применяться в выходные и праздничные дни. Это сделано для того, чтобы выровнять нагрузку в рабочее и нерабочее время. Потребителей стимулируют  пользоваться энергоемким оборудованием в период действия более дешевого тарифа.

Счетчики, которые позволяют вести учет электроэнергии по нескольким тарифам, называются многотарифными. Чаще всего производители закладывают возможность учета по четырем тарифам, но можно встретить модели счетчиков с тремя и восемью тарифами. При вводе в эксплуатацию в счетчиках устанавливают  местное время и программируют согласно тарифному расписанию, принятому в конкретном регионе. Переключение тарифов осуществляется внутренним тарификатором.

На ЖК индикаторе счетчиков отображается количество электроэнергии потребленной по каждому тарифу, а также сумму по всем тарифам.
Многотарифные счетчики могут быть запрограммированы на однотарифный учет.

Непосредственное и трансформаторное подключение счетчиков к электрической сети.

NP73E Однофазные счетчики включаются в сеть непосредственно. Диапазоны рабочих токов – 5(50)А, 5(60)А, 5(80)А, 10(80)А, 10(100)А, где цифра перед скобкой указывает на величину номинального тока, число в скобках – величина максимального тока. 

Трехфазные счетчики, используемые на стороне высокого напряжения трансформаторных подстанций, подключаются к сети через высоковольтные трансформаторы тока и напряжения.

В электрических сетях низкого напряжения применяются как счетчики непосредственного, так и трансформаторного включения. Максимальный ток, на который изготавливают счетчики непосредственного включения, составляет 100А.  Если сила тока в контролируемой сети превышает 100А, то применяются счетчики трансформаторного включения.

Иногда встречаются случаи, когда счетчики трансформаторного включения используются при токе нагрузки менее 100А. Причин для такого решения может быть несколько. В перспективе ожидается увеличение потребляемой мощности. Или наоборот, потребление снижено на время ремонта, реконструкции или остановки части оборудования. Если потребляемая мощность в процессе функционирования предприятия может изменяться в широких пределах, то экономически выгоднее заменить трансформаторы тока, чем устанавливать новый счетчик.

У счетчиков трансформаторного включения величина рабочего тока может отличаться. Если используются трансформаторы с током вторичной обмотки равной 5А, то значения  номинального и максимального тока могут принимать следующие значения: 1(7,5)А; 5(7,5)А; 5(10)А. При токе вторичной обмотки измерительного трансформатора равной 1А, диапазон рабочих токов счетчика находится в пределах 1(2)А.

Трехфазные счетчики непосредственного включения рассчитаны на работу в одном из следующих диапазонов: 5(50)А, 5(60)А, 5(80)А, 10(80)А, 5(100)А, 10(100)А.

Счетчики активной, активной и реактивной энергии.

Существующие счетчики подразделяются на счетчики  активной энергии и счетчики  активной и реактивной энергии.

Счетчики активной энергии обычно применяются тогда, когда нагрузка носит резистивный характер. К такой нагрузке относятся электроплиты с конфорками, водонагреватели, утюги, лампы накаливания. 

В последние годы у абонентов электросетей, в том числе подключенных к однофазным сетям,  в нагрузке существенно возросла реактивная составляющая. Даже в бытовом секторе часто используется ручной электроинструмент, малогабаритные станки и сварочные аппараты. В освещении лампы накаливания заменяются  другими источниками света. Поэтому потребовались приборы учета, которые бы более полно учитывали потребление  электроэнергии. Счетчики активной и реактивной энергии успешно решают эту задачу. Они обладают расширенным функционалом, контролируют большее количество параметров, могут быть интегрированы в автоматизированные системы учета энергоресурсов.

Классы точности счетчиков электроэнергии.

Счетчики выпускаются с классом точности 0,2s, 0,5s, 1,0, 2,0. У однофазных счетчиков класс точности должен быть не ниже 2,0. У трехфазных – не ниже 1,0. Требования по использованию счетчиков того или иного класса точности изложены в Постановлении Правительства РФ от 04.05.2012 N 442 (ред. от 27.09.2018) «О функционировании розничных рынков электрической энергии, полном и (или) частичном ограничении режима потребления электрической энергии».

Для счетчиков активной и реактивной энергии отдельно указывается класс точности для каналов учета активной и реактивной энергии. Например, счетчик Меркурий 234 ART-03PR, имеет класс точности A/R – 0,5s/1,0. Как правило, точность измерений реактивной энергии ниже на одну ступень по сравнению с точностью измерений активной энергии. Но иногда встречаются счетчики, например, производимые АО «Концерн Энергомера», у которых класс точности по активной и реактивной энергии одинаков.

Тип отсчетного устройства.

Для снятия показаний непосредственно с приборов  учета используются механические отсчетные устройства (ОУ) и  жидкокристаллические индикаторы (ЖКИ).

Механические ОУ, как правило, устанавливаются на счетчики активной энергии, не имеющие цифровых интерфейсов. Более сложные приборы оснащают ЖКИ, так как они более информативны.

Качество отображаемой информации на ЖКИ может зависеть от температуры окружающей среды. При температуре -200С и ниже не исключается погасание индикаторов. При этом счетчики сохраняют работоспособность и продолжают учет электроэнергии. При повышении температуры отображение информации восстанавливается.

Ряд счетчиков оснащаются подсветкой ЖКИ, что облегчает снятие показаний в условиях недостаточной освещенности.

Цифровые интерфейсы для передачи информации на диспетчерские пункты или на переносные устройства.

У многофункциональных счетчиков лишь малая часть информации выводится на жидкокристаллический индикатор.  Архив значений потребленной энергии, профиль мощности, параметры качества электросети, журнал событий сохраняются в  энергонезависимой памяти счетчиков. Получить доступ ко всему массиву информации можно лишь с помощью цифровых интерфейсов. К их числу относятся – RS-485, CAN, GSM/GPRS, PLC, RF, Ethernet, оптопорт.

Наибольшее распространение получил последовательный интерфейс RS-485. К его достоинствам можно отнести возможность объединения в сеть десятков и даже сотен приборов, а также большая, до 1200 метров, длина соединительных линий. В такой сети каждому прибору присваивается индивидуальный сетевой адрес. Опрос производится только  по запросу с диспетчерского  пункта. Самостоятельно счетчики ничего в сеть не транслируют.

В некоторых моделях счетчиков «Меркурий» (Меркурий 200.04, Меркурий 230AR-01CL, -02CL, -03CL, Меркурий 230ART-01CLN, -02CLN, -03CLN)  используется интерфейс CAN ( Controller Area Network — сеть контроллеров). Однако количество таких моделей в последние годы было сокращено.
 
CAN разрабатывался фирмой Bosch для подвижных объектов, в первую очередь, для автотранспорта. Впоследствии данный интерфейс был применен в промышленности. Его особенностью является то, что в сети может быть несколько контроллеров и ведомые устройства могут самостоятельно передавать информацию на верхний уровень управления, например, в случае возникновения аварийных ситуаций или при выходе за допустимые пределы наиболее важных параметров. Однако в счетчиках «Меркурий» подобный функционал не реализован. Независимо от того, какой интерфейс  используется – RS-485 или CAN, счетчики работают как ведомые устройства и  информация, получаемая от них при опросе, будет полностью идентична. То есть разница между этими интерфейсами заключается лишь в использовании различной элементной базы.

RS-485 и CAN являются промышленными интерфейсами и соединить их с персональнымиusb-rs485 компьютерами напрямую не представляется возможным. Эта проблема решается путем применения преобразователей интерфейса RS-485 – USB и CAN – USB. Могут использоваться как общепромышленные модели, так устройства, предлагаемые производителями счетчиков.

Для построения автоматизированной системы учета электроэнергии с использованием интерфейсов RS-485 или CAN необходима прокладка дополнительной информационной линии. Такая линия не потребуется, если для передачи информации  к счетчикам и от счетчиков использовать провода электрической сети. Данная технология получила название PLC (PowМеркурий 225er Line Communication). На практике эта технология реализуется через установку в счетчики модуля PLC интерфейса. Однако персональные компьютеры, как и в случае с RS-485, не имеют портов, способных принимать информацию в формате PLC. Поэтому требуются дополнительные устройства, которые должны преобразовывать  информацию, передаваемую в одном из промышленных стандартов в формат PLC и обратно. Данные устройства входят в состав концентраторов, коммуникаторов, устройств передачи данных и т.п. Конкретное название зависит от производителя.

Использование счетчиков с интерфейсом PLC имеет смысл только в том случае, если планируется развертывание автоматизированной системы коммерческого учета электроэнергии. В противном случае потребитель переплачивает за функционал, который не используется. Разница в стоимости счетчиков с однотипным функционалом, без PLC и с PLC может составлять десятки процентов.

ПСЧ-4ТМ.05МК s-1-02-01 При размещении счетчиков на удаленных объектах очень часто их опрос осуществляется через GSM/GPRS модемы (шлюзы). GSM-модем может быть встроенным или внешним. Для организации связи внешний модем  соединяется с выходом интерфейса RS-485 счетчика. Производители, как правило, предлагают фирменные GSM-модемы (шлюзы, коммуникаторы). Их стоимость обычно выше общепромышленных аналогов. Но фирменные устройства настроены на работу с конкретными образцами счетчиков, что облегчает их сопряжение и сокращает время сеансов связи.

Интерфейсы RF также позволяют отказаться от проводных линий, так как обмен информации происходит посредством радиоканала. Радиоканал может быть организован между счетчиком и верхним уровнем системы, а также между счетчиком и абонентским терминалом. Второй вариант используется для опроса счетчиков устанавливаемых на опорах ЛЭП или в случаях, когда доступ к счетчику затруднен.

В России выделены несколько частотных диапазонов, на использование которых не требуется получение разрешений. Передача информации в системах учета электроэнергии может вестись на следующих частотах: 433.075-434.750 МГц, 868,7-869,2 МГц и 2400-2483,5 МГц. Однако на эти диапазоны Постановлением Правительства РФ от 12.10.2004 N 539 (ред. от 25.09.2018) «О порядке регистрации радиоэлектронных средств и высокочастотных устройств» накладываются ограничения на мощность передающих устройств. Для первых двух диапазонов мощность излучения передатчика не должна быть более 10 мВт.

В нормативной базе нет требования об использовании в электросчетчиках какого-то одного  диапазона, из числа разрешенных. Поэтому каждый производитель выбирает те диапазоны частот, которые являются для них предпочтительными. Например, в счетчиках МИРТЕК 32 могут быть применены радиомодули на частоту 433 или 2400 МГц.  Беспроводные автоматизированные системы контроля и учета ресурсов ЖКХ на базе счетчиков с радиомодулем ФОБОС-1 и ФОБОС-3 используют частоту 868,8 МГц. Счетчики Меркурий 208.LF и Меркурий 238.LF для связи с блоком индикации Меркурий 258.2F также используют диапазон 868 МГц. Счетчики МАЯК 302АРТН.132Т обмениваются информацией с удаленными терминалами на частоте 2400 МГц.

Так как мощность радиомодемов невелика, то дальность связи будет зависеть от характера застройки – городская или сельская, а также от интенсивности помех в выбранном диапазоне.

Существенно увеличить расстояние между диспетчерским центром и счетчиками позволяет технология ZigBee, использующая диапазон 2400 Гц. Большая работа по стандартизации этого протокола связи позволяет включать в систему устройства разных производителей.

Главная идея, которая заложена в технологию ZigBee состоит в том, что такая система является самоорганизующейся и самовосстанавливающейся. Благодаря этому, в автоматическом режиме происходит маршрутизация сетевого трафика, определяется появление новых устройств, выбираются альтернативные маршруты передачи информации при отказе отдельных элементов.  Надежность функционирования системы достигается за счет избыточных связей каждого ее звена. То есть реализуется не иерархическая,  а сетевая структура, когда каждый элемент системы имеет связь со смежными устройствами.

В автоматизированной системе контроля и учета электроэнергии, построенной на основе технологии  ZigBee, каждый счетчик может стать ретранслятором информационных посылок. За счет этого расстояние от самого удаленного прибора до диспетчерского пункта может составлять несколько километров. 

Ряд производителей (Концерн «Энергомера», АО «НЗиФ») внедрили в своих счетчиках возможность использования модулей Ethernet, что позволяет подключать эти приборы к локальным вычислительным сетям без использования дополнительных адаптеров.

Оптопорт Для конфигурирования и опроса счетчиков также используются оптопорты. На передней панели большинства современных счетчиков располагается специальное окно, на которое накладывается адаптер оптопорта, подключаемого  к  USB-порту  компьютера. Данный метод обмена информацией со счетчиком не предполагает передачи информации на большие расстояния, но позволяет оперативно выполнить необходимые операции, даже если клеммы интерфейсов счетчика находятся под опломбированной крышкой.

Для того чтобы запрограммировать счетчик перед установкой или снять с него показания  в процессе эксплуатации необходимо соответствующее программное обеспечение, устанавливаемое на компьютер. Это может быть бесплатная сервисная   программа-конфигуратор или коммерческое ПО. 

У всех ведущих производителей счетчиков появились приборы, которые могут быть адаптированы под конкретного потребителя. В этом вопросе просматривается два основных подхода. Первый – это когда с самого начала конфигурация счетчика определяется заказчиком. Такой подход практикует «Эльстер Метроника». В этой компании любой счетчик изготавливается на основе заполненного опросного листа.

При втором подходе потребитель выбирает модель счетчика, допускающего установку плат расширения.  Данные счетчики изначально являются готовыми изделиями с определенным функционалом и набором интерфейсов. Далее возможности прибора наращиваются путем установки  дополнительных плат интерфейсов, выбираемые из стандартного набора.

Импульсные выходы.

Многие современные счетчики электроэнергии имеют импульсные выходы. Их количество равно количеству каналов учета электроэнергии. У счетчиков активной энергии один импульсный выход. У двунаправленных счетчиков четыре:  один — на прямое направление активной энергии, один — на обратное направление активной энергии,  один — на прямое направление реактивной энергии и один — на обратное направление реактивной энергии.

При включении счетчика в режим поверки импульсные выходы работают как поверочные, в рабочем режиме, как телеметрические.

Принцип работы импульсных выходов основан на том, что частота следования импульсов пропорциональна  току, протекающему через измерительные цепи.

Каждый тип счетчиков имеет такой параметр, как «постоянная счетчика». Постоянная счетчика измеряется в имп./(кВт*час) для каналов учета активной энергии и в имп./(кВАр*час) для каналов учета реактивной энергии. Эти значения указываются в паспортах (руководствах по эксплуатации) и на передней панели счетчиков.

До появления цифровых интерфейсов существовали системы автоматического учета электроэнергии, основанные на подсчете импульсов, передаваемых счетчиками. В настоящее время этот метод является устаревшим.

В некоторых счетчиках предусмотрена возможность программного изменения режима работы импульсных выходов. Вместо генератора импульсов выходы могут подключаться к устройству управления нагрузкой, которое изменяет импеданс  своей выходной цепи в зависимости от того, есть команда на ограничение нагрузки или нет.

Конструктивное исполнение.

Счетчики, предназначенные для установки в трансформаторных подстанциях, распределитСЕ 101 R5.1 5(60)Аельных устройствах и шкафах учета электроэнергии изготавливаются в виде моноблока. Такие счетчики могут иметь корпуса для монтажа на панель с помощью трех винтов или на 35 миллиметровую DIN-рейку. Встречаются счетчики, корпуса которых позволяют крепить их как на панель, так и на рейку. Например, СЕ 101 в корпусе R5.1.

Счетчики для установки на опоры линий электропередач состоят из двух частей – блока счетчика и устройства индикации. Ниже приводится несколько типов счетчиков, конструкция которых предусматривает такой способ установки:
а) однофазные — Меркурий 208, РиМ 129, МАЯК 103АРТН, CE208-C2, NP523, NP71E.2-1-5, AD11S;
б) трехфазные — Меркурий 238, РиМ 489.18, Маяк 132АРТН, CE308 C36 DLP, AD13S.

У каждого производителя устройство индикации называется по-разному. У АО «РиМ» — этоРиМ 040 rim129 дистанционный дисплей, у АО «НЗиФ» — удаленный терминал, у ООО «Инкотекс» — блок индикации. Связь между счетчиком и устройством индикации организуется через интерфейсы RF или PLC.  Если связь организована через радиоканал, то устройство индикации может быть переносным. При использовании интерфейса PLC устройство индикации должно быть  подключено к сети.

Устройства индикации могут сопрягаться с некоторыми счетчиками в корпусе моноблок. Производимый АО «РиМ» дистанционный дисплей РиМ 040 позволяет опрашивать счетчики РиМ 489, устанавливаемые в трансформаторные подстанции.

ООО «Матрица» заложила возможность опроса счетчиков 8 серии типа AD11A, AD13A с помощью пользовательского дисплея CIU8.В-2-1.

В соответствии с пунктом 1.5.13 «Правил устройства электроустановок» (ПУЭ) каждый установленный расчетный счетчик должен иметь на винтах, крепящих кожух счетчика, пломбы с клеймом госповерителя, а на зажимной крышке — пломбу энергоснабжающей организации. Иногда на счетчиках можно увидеть дополнительные пломбы, клейма или голографические наклейки. Эта пломбировка производится  заводами изготовителями для защиты от несанкционированного вскрытия верхней крышки. 

Количество направлений учета.

В настоящее время промышленность предлагает однонаправленные, двунаправленные и комбинированные  счетчики электроэнергии.
Однонаправленные счетчики могут использоваться только на линиях с потоком энергии в одном направлении.

Двунаправленные счетчики электроэнергии ведут учет электроэнергии в прямом и обратном направлении. Они применяются в тех случаях, когда имеют место перетоки электроэнергии между сетями или хозяйствующими субъектами.  Счетчики размещаются на границе балансовой принадлежности электросетей.  Полученные показания используются при расчетах за  межсистемные перетоки электроэнергии. Так как промышленные сети являются трехфазными, то и двунаправленные счетчики, чаще всего, являются трехфазными. Хотя существуют и однофазные двунаправленные счетчики.

Ниже приведены некоторые типы двунаправленных счетчиков и их производители. Меркурий 234ART2 и Меркурий ARTM2 (ООО «Инкотекс»),  СЕ301, СЕ303, СЕ304, СЕ308 при наличии в обозначении символа «Y», ЦЭ6850М при наличии в обозначении символов «2Н» (Концерн «Энергомера»), МАЯК 103 АРТ, МАЯК 302АРТ, ПЧС-4ТМ.05МК исп. 00…07, 20, 21 (АО «НЗиФ»), NP73, AD13, NP71, AD11 (ООО «Матрица»).

Комбинированные счетчики имеют три канала учета и предназначены для учета активной энергии независимо от направления тока в каждой фазе сети и реактивной энергии прямого и обратного направления и могут использоваться только на линиях с потоком энергии в одном направлении.

Управление нагрузкой.

Существует два способа ограничения нагрузки  — непосредственно через силовые  реле встроенные в счетчик и через внешние устройства. Внешние устройства могут быть активированы вспомогательными слаботочными реле счетчика или изменением сопротивления на импульсных выходах счетчика, переведенных в режим управления нагрузкой.

Для того чтобы счетчик мог ограничивать или отключать электроэнергию подаваемую потребителю, необходимо программно установить определенные параметры. Эта операция может быть выполнена как перед вводом прибора учета в эксплуатацию, так в процессе эксплуатации. Если счетчик входит в состав автоматизированной системы коммерческого учета электроэнергии, то команда на ограничение электроэнергии может быть подана дистанционно оператором диспетчерского пункта.

Функция управления нагрузкой реализуется в счетчиках непосредственного включения.

Многофункциональные счетчики.

Многофункциональные счетчики выводят на ЖК индикаторы информацию о текущих значениях энергопотребления и параметрах сети.  К параметрам сети относятся:
— мгновенные значения активной, реактивной и полной мощности по каждой фазе и по сумме фаз с указанием направления вектора полной мощности;
—  действующие значения фазных токов и напряжений, в том числе измеренные на одном периоде частоты сети, для целей анализа показателей качества электроэнергии;
—  значения углов между фазными напряжениями;
—  частота сети;
—  коэффициенты мощности по каждой фазе и по сумме фаз.

Однако огромный массив информации доступен только при подключении к компьютеру с установленным специализированным программным обеспечением. В этом случае становятся доступны следующие данные:
— об энергопотреблении не только за предыдущий день и месяц, но и на период от одного до трех лет;
— о профиле мощности на глубину, зависящую от объема памяти и периода интегрирования;
— параметры качества электроэнергии – дата и время выхода и возврата за нижнее допустимое и предельное допустимое значение напряжения каждой из фаз и частоты сети;
— значения утренних и вечерних максимумов мощности;
— журнала событий: даты и времени включения/выключения счетчика, коррекции текущего времени, включения и выключения счетчика или отдельных фаз, превышения лимита энергии по тарифам, вскрытия и закрытия основной крышки прибора и других параметров в зависимости от типа прибора и производителя.

Анализ этих данных открывает возможности по выработке мер для оптимизации энергопотребления и предотвращения аварийных ситуаций.

Сроки ввода счетчиков электроэнергии в эксплуатацию.

В ПУЭ (п. 1.5.13) определено, что на вновь устанавливаемых трехфазных счетчиках должны быть пломбы государственной поверки с давностью не более 12 месяцев, а на однофазных счетчиках — с давностью не более 2 лет. Если это требование нарушено, то счетчики должны быть подвергнуты очередной поверке.

конструкционные особенности и поверочный интервал

Содержание статьи:

В серию электронных устройств «Энергомера» входят современные приборы учета, предназначенные для эксплуатации не только в быту, но и в промышленных условиях. Электросчетчики Энергомера СЕ 101, например, давно внесены в Реестр измерительных средств, что является законным основанием для их применения в электросетях. Благодаря простоте обслуживания и надежности конструкции эти приборы пользуются большой популярностью у широкого круга потребителей.

Описание прибора

Однофазный электросчетчик Энергомера

Счетчик Энергомера однофазный, а также его трехфазные модификации способны измерять активную и реактивную составляющую мощности, потребляемой от электросети. Кроме того, посредством счетчиков электроэнергии Энергомера удается организовать оценку расхода электроэнергии в многотарифном режиме. Это позволяет дифференцировать учет мощности, потребленной в дневное или ночное время, а также в часы пиковой нагрузки.

На монтажной колодке большинства моделей этого класса наряду с коммутационными контактами имеются специальные клеммы для дистанционного учета показаний. Подключение телеметрического выхода электронного счетчика СЕ 101, например, осуществляется посредством этих контактов при его первичном запуске. Кроме того, в нем предусмотрен встроенный энергонезависимый блок памяти. В случае пропадания тока в питающей линии на дисплее фиксируются последние показания, а также дата, время и тариф, в котором прибор работал перед снятием напряжения.

На передней панели эл счетчика марки СЕ 101 также имеется два светодиодных индикатора. Первый из них, обозначенный как «Сеть» начинает светиться при подключении электричества. С появлением нагрузки он начинает мигать; это означает, что электронная учетная схема запустилась в работу.

Если светодиод под маркировкой «Сеть» не загорается – следует проверить контакты на клеммах соединителя на передней панели. Если с ними все в порядке, а индикатор все равно не горит, прибор следует оправить в ремонт.

В расположенном рядом индикаторном окне указывается номинал потребляемой в данный момент мощности «600 imp/(kW-h)».

Технические характеристики

Счетчик электроэнергии однофазный CE101-R5

Перед выбором конкретной модели счетчика Энергомера обязательно нужно ознакомиться с техническими характеристиками приобретаемого прибора. Электросчетчик СЕ 101, например, имеет следующие технические характеристики:

  • Первый класс по точности.
  • Количество предусмотренных тарифных зон – одна.
  • Напряжение, на которое рассчитан счетчик – 230 Вольт (50 Гц).
  • Допустимый прямой ток – 60 или 100 Ампер (в зависимости от модели).
  • Мощность, потребляемая самим прибором от сети – 0,8 Ватт.
  • Предел допустимых температур – от -40 до + 70 градусов.
  • Вес – 0,495 кг.

Схема включения прибора в обслуживаемую электросеть – прямая, а по степени защищенности от пыли и влаги он относится к классу IP5.

Срок службы прибора и межповерочный интервал

Технические характеристики электросчетчика Энергомера СЕ101

Для электрических счетчиков «Энергомера» срок службы определяется теми условиями, в которых они постоянно эксплуатируются. Этот показатель может существенно отличаться от параметра, заданного производителем в технических условиях (до 30 лет). Это отличие порой достигает половину указанного срока.

Через определенный временной промежуток, прошедший с запуска в эксплуатацию электросчетчика, служба поставщика обязана проводить поверку прибора. Межповерочный интервал для приборов марки СЕ 101, например, устанавливается в границах от 8 до 16 лет, в зависимости от года выпуска. Конкретная цифра обычно указывается производителем в паспорте трехфазного прибора учета.

Преимущества электросчетчиков

При рассмотрении преимуществ модельного ряда изделий от «Энергомера» отмечается, что эти приборы считаются самыми качественными из всех представленных на рынке образцов. К достоинствам относят:

  • Высокую функциональность изделия, способного работать в нескольких режимах и сохранять в памяти нужную информацию.
  • Удобство снятия показаний, которые при желании передаются на диспетчерский пульт в автоматическом режиме.
  • Длительный гарантийный срок эксплуатации (до 30 лет).

Благодаря надежности учетного устройства вероятность его случайной поломки сведена к минимуму.

Как снять показания

Показания электросчетчика

Прежде чем приступать к снятию показаний с электросчетчика Энергомера СЕ 101, следует определиться с разрядностью этого прибора. У всей линейки моделей этого класса на индикаторе имеется 6 или 7 разрядов с запятой и крайней правой цифрой другого цвета.

Последний выделенный красным знак означает доли киловатта, которые при снятии показаний не учитываются. Для получения корректной информации пользователю потребуется переписать все цифры, расположенные левее от запятой. Списанное число указывает на общий расход электрической энергии за все время пользования этим счетчиком. Таким образом, для модификаций S6 и R5 счетчика СЕ-102 следует фиксировать только 5 цифр, а для модели S10 – 6.

Для получения итогового значения пользователь должен будет из записанных ранее цифр вычесть показания, снятые в прошлом месяце. Эта разница будет соответствовать количеству израсходованной электроэнергии за отчетный период. Для получения результата в денежном выражении нужно умножить снятые показания на ставку по тарифу за 1 киловатт, установленную для данного региона. Для двухтарифного прибора порядок действий несколько усложнятся. В этом случае потребуется зафиксировать показания для ночного и дневного времени в отдельности. Для получения конечного результата необходимо умножить снятые данные на «свой» тариф, а затем просуммировать два вычисленных значения.

Разновидности счетчика

Счетчик электроэнергии ЦЭ6803ВМ (трехфазный)

Для описания существующих разновидностей приборов из линейки «Энергомера» достаточно упомянуть следующие модели:

  • СЕ101.
  • ЦЭ6803В.
  • ЦЭ6803ВМ.
  • ЦЭ68038 и другие.

Помимо этого деления, модели ЦЭ6803В, например, различают по способу крепления конкретного образца в пределах шкафа. В соответствии с ним изделия маркируются буквенно-цифровыми символами: R31, R32 или Ш33. Наличие на приборе кода R31 и R32 означает, что на его корпусе имеются специальные застежки, посредством которых он крепится на DIN-рейке.

Направляющая типа дин рейки изготавливается в виде металлического профиля с продольной просечкой.

Изделия, маркированные значком Ш33, фиксируются внутри шкафа или щитка с помощью специального анкерного крепления, состоящего из трех болтов. На задней стенке счетчика для этих целей предусмотрены особые крепежные петли.

Особенности установки счетчика

Заявка на подключение электросчетчика

При знакомстве с различными моделями линейки Энергомера подключение счетчика к электросети рассматривается особо. Это связано с тем, что от правильности выполнения этой процедуры зависит не только корректность начисления платы за потребленную энергию, но и работоспособность самого счетчика.

Приступать к подключению прибора допускается лишь после того, как оформлены все обязательные для этой процедуры разрешительные документы.

Инструкция по монтажу прибору выглядит следующим образом:

  1. Представители «Энергосбыта» высылают в адрес потребителя техническую документацию с указанием разновидности электросчетчика. В ней же прописываются номинал автомата защиты, а также сечение подводящих проводов и способ крепления (на стенке щитка или на DIN-рейку).
  2. Местный электрик или специалист от провайдера устанавливает счетчик по месту и проводит его пробное включение в сеть.
  3. Этот же человек опломбирует прибор, после чего составляется акт сдачи и запуска его в эксплуатацию.

Заключительный документ подписывается с одной стороны представителем «Энергосбыта», а с другой – потребителем электроэнергии.

Электросчетчики из линейки «Энергомера», включая трехфазные приборы, отличаются универсальностью и повышенной функциональностью. Это проявляется в возможности использовать устройства в самых различных областях хозяйственной деятельности, связанных с потреблением электроэнергии. Изделия этой группы знакомы пользователям уже не первый десяток лет и зарекомендовали себя за это время только с хорошей стороны.

индукционные, электронные, одно- и многотарифные

Содержание статьи:

Каждое помещение, в котором проведена электроэнергия, имеет прибор учета электроэнергии. Исключения могут составлять лишь те сооружения, которые оснащены полностью автономной системой, например, ветряки и солнечные батареи.

Виды счетчиков электроэнергии

Однофазные индукционные счетчики электроэнергии

Электросчетчик – это прибор учета расхода электроэнергии переменного и постоянного тока.

Существует два типа данных устройств: электронные и индукционные модели. Все они отличаются принципом своей работы, но это никак не отражается на точности подсчетов, поскольку перед продажей каждое устройство проверяется и при необходимости калибруется сотрудниками соответствующих организаций. Компании независимые, поэтому подвоха в их деятельности ждать не стоит. Чтобы было проще определиться с подходящим видом электрического прибора в конкретном случае, нужно более детально изучить особенности каждого.

Индукционный

Данная разновидность широко распространена благодаря большому количеству преимущественных особенностей. Это традиционная конструкция, оснащенная вращающимся колесом. Работа основывается на принципах магнитного поля. Это поле образует несколько катушек – тока и напряжения. Они приводят диск в движение, который запускает счетный механизм.

Из недостатков стоит отметить точность подсчета. Погрешность находится в зоне допустимой, но результаты могли бы быть и лучше.

Существенное достоинство устройства – длительный срок службы. Некоторые производители дают гарантию на свои приборы 10-15 лет.

Электронный

Модульный трехфазный электронный электросчетчик

Эту разновидность можно считать относительно новой. Принцип работы основывается на измерении напряжения и силы тока в электрической сети. Отсутствуют какие-либо промежуточные механизмы, что обеспечивает высокую точность работы. Все показания отображаются на небольшом дисплее, а также хранятся во встроенной памяти. Более детально о достоинствах приборов:

  • Компактные размеры.
  • Его нельзя остановить или замедлить с помощью магнита.
  • Все модели оснащены многотарифной функцией.
  • Имеется встроенная самокорректировка показаний.
  • Удобное снятие показаний.
  • Точность показаний можно повысить дополнительно, для этого устанавливают специальную микросхему.

Несмотря на большое количество преимуществ, имеются и недостатки. Самый весомый – высокая стоимость.

Однотарифные и многотарифные виды электросчетчиков

Однотарифные приборы можно назвать традиционными. Это устройства, к которым привыкли все жители постсоветского пространства.

Многотарифные счетчики в России новика, поскольку вошли в обиход потребителей относительно недавно. Основная задача такого прибора – сокращение финансовых расходов потребителей. Суть экономии заключается в разнице стоимости электроэнергии от времени суток. В ночное и утреннее время она меньше, чем вечером.

Счетчик электроэнергии однофазный многотарифный CE102-R5.1
Счетчик электроэнергии однофазный однотарифный Тайпит Нева 103.5 1S0

Автоматический тип электросчетчика

Автоматический тип электросчетчика представляет собой разновидность электронных моделей. Особенность его заключается в автоматической передаче данных без участия домовладельцев. Процесс происходит своевременно, без потери личного времени. Такие устройства еще не очень распространены в России, но эксперты предполагают, что через 10-15 лет они будут в каждой второй квартире.

Преимущества и недостатки многотарифности

Разделение суток на зоны для контроля электроэнергии многотарифными счетчиками

Новые приборы учета имеют свои конструктивные особенности, а также преимущества и недостатки, которые обязательны к ознакомлению при выборе устройства. К достоинствам следует отнести:

  • Экологичность. Снижается количество вредных и отравляющих природу и людей выбросов в атмосферу.
  • Ощутимая экономия семейного бюджета. Как показывает опыт, прибор полностью окупается в течение одного года.
  • Облегчение работы электрических станций: экономия топлива, снижение стоимости ремонтных работ и обслуживания.

Из недостатков устройств стоит выделить лишь необходимость подстраиваться под тарифы счетчика. Если пренебрегать этим, количество расходов не сократится.

Класс точности приборов и их мощность

Таблица необходимых классов точности для расчетных счетчиков активной электроэнергии

Класс точности устройства в процентном соотношении вычисляет погрешность подсчетов. На сегодняшний день можно использовать электрические счетчики класса точности не менее 2.0.

Еще один важный параметр работы – мощность. Его учитывают еще при выборе прибора, исходя из суточного потребления электроэнергии – общая нагрузка на электрическую цепь в квартире, доме. В ассортименте есть счетчики с нагрузкой по току от 5 до 100 ампер.

Условия использования и методы крепления

Современные приборы учета фиксируются на специальную DIN-рейку или на болты.

С учетом условий работы оборудование делится на всепогодное, предназначенное для работы на улице, и используемое только в отапливаемых и сухих помещениях. Стоимость последних моделей ниже.

Какую модель лучше выбрать

Требования к счетчикам электроэнергии

При выборе прибора для учета потребляемой электроэнергии важно, чтобы были учтены требования ГОСТа:

  • Модель должна быть внесена в общий реестр, допущенных в РФ приборов учета, а также иметь непросроченное свидетельство о проверке.
  • Класс точности должен соответствовать регламентируемым нормативно-правовым актам (не ниже, чем 2.0).
  • Каждый прибор должен иметь пломбу с клеймом государственного образца на кожухе клеммных контактов. Если счетчик устанавливается впервые, нужно убедиться, что пломба не старше 2-3 лет.

Чтобы упростить процесс выбора, следует ознакомиться с рейтингом лучших моделей.

Однотарифный, однофазный
  • Меркурий 201;
  • Энергомера СЕ-101;
  • АВВ FBU-11200;
  • Нева 101103.
Многотарифный, однофазный
  • Меркурий 200-2;
  • Энергомера СЕ-102;
  • АВВ FBU-11205;
  • Нева МТ-114.
Трехфазный, однотарифный
  • Меркурий 231 АМ-01;
  • Энергомера СЕ-300;
  • Нева МТ-324;
  • Нева 303-306.
Трехфазный, многотарифный
  • Меркурий 231 АТ-01;
  • Энергомера СЕ-301.
Меркурий 201
АВВ FBU-11205
Энергомера СЕ-301
Нева МТ-324

К выбору электрического счетчика следует подойти со всей ответственностью, в противном случае показания могут быть неверными, что приведет к штрафным санкциям от организаций.

БЛОК 19. Текст: «Электричество».

БЛОК 19

I. Найдите слова в словаре. Запишите их и узнайте.

удалить, сгруппировать, излишек, отменить, потереть, составить, достаточно, провести, внести вклад, изолятор, оттолкнуть, перераспределить, приобрести, подвергнуться

II.Прочитай текст. При необходимости воспользуйтесь словарем.

Текст: «Электричество».

Электричество и все его наблюдаемые эффекты являются результатом свойств стационарных или движущихся электрических зарядов. Есть два типа, известные как положительные заряды и отрицательные заряды, которые существуют во всех веществах и во всех состояниях материи — твердом, жидком и газообразном.

Все вещества состоят из атомов, которые состоят из ядра (содержащего протоны и нейтроны) и вращающихся электронов.Протоны заряжены положительно, а электроны — отрицательно. Электроны можно удалить из атомов и заставить участвовать в различных электрических явлениях. Протоны, с другой стороны, обычно находятся в составе кластера протонов, нейтронов и электронов, известного как ион. Ионы могут быть заряжены положительно или отрицательно, в зависимости от того, имеют ли они избыток протонов или электронов.

В обычном куске материала количество протонов и электронов в каждом атоме и, следовательно, в материале в целом одинаково.Положительные и отрицательные заряды в значительной степени компенсируют друг друга, и никаких электрических эффектов не наблюдается. Но если добавить дополнительные заряды одного типа, материал останется с чистым зарядом, и возникнут электрические эффекты.

Заряды можно переносить с одного материала на другой, протирая их друг о друга. Изучение этих чистых стационарных зарядов и их влияния друг на друга составляет предмет статического электричества или электростатики.

В некоторых твердых материалах — в частности, в металлах — некоторые электроны достаточно «свободны», чтобы иметь возможность перемещаться через материал в потоке, образуя электрический ток.Это основа нынешнего электричества.

Твердые тела, жидкости и газы могут проводить электрический ток, если имеется достаточно свободных электронов или ионов. Электроны и положительно заряженные ионы движутся в материале в противоположных направлениях, но в целом оба вносят вклад в ток в проводящей среде. В изоляторе электроны слишком прочно закреплены химической связью, чтобы иметь возможность двигаться, а материал обычно не проводит электричество.

Статическое электричество.Статическое электричество можно получить, протерев изоляционный материал, например, полиэтиленовый стержень, сухой тканью. Заряды переносятся таким образом, что полиэтилен остается с чистым зарядом одного типа, а ткань — с чистым зарядом другого типа. Затем стержень и ткань притягиваются друг к другу.

С другой стороны, два натертых стержня из одного и того же материала отталкиваются, а две ткани отталкиваются. Таким образом, разные заряды испытывают силу притяжения, тогда как одноименные заряды отталкиваются друг от друга.

Невозможно найти материал, который одновременно отталкивает полиэтилен и ткань.

Электростатическая индукция. Хотя полиэтилен и ткань не отталкивают ничего, незаряженные куски материала (например, небольшие клочки бумаги) притягиваются к обоим. Это результат явления, называемого электростатической индукцией. Бумага в целом нейтральна, но влияние заряженного полиэтилена перераспределяет заряды в бумаге. Полиэтилен заряжен положительно и оказывает притягивающую силу на отрицательные заряды бумаги. Конечный результат — взаимное притяжение.

Закон Кулона и электрическое поле. Силы электростатического притяжения и отталкивания между заряженными объектами вызываются связанными с ними электрическими полями. Величина силы между двумя зарядами зависит от их размера, расстояния между ними и вещества, в котором они находятся. Сила пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними — соотношение, известное как Закон Кулона.

Сила также уменьшается, если заряды помещены в материал, который претерпевает электрическую поляризацию, которая разделяет заряды и частично экранирует их друг от друга.Степень экранирования количественно определяется свойством, называемым диэлектрической проницаемостью вещества. Вакуум, который не может подвергаться поляризации, имеет самую низкую диэлектрическую проницаемость, называемую диэлектрической проницаемостью свободного пространства. Диэлектрическая проницаемость других материалов зависит от их структуры; ионные вещества, такие как вода, например, обычно имеют более высокую диэлектрическую проницаемость, чем неионные вещества.

III. Найдите предложения, которых нет в тексте.

  1. Современная физика определяет электромагнитное поле как особую форму материи, обладающую определенными свойствами.
  2. Положительный и отрицательный заряды в значительной степени компенсируют друг друга, и никаких электрических эффектов не наблюдается.
  3. Электроны и положительно заряженные ионы движутся в материале в противоположных направлениях, но в целом оба вносят вклад в ток в проводящей среде.
  4. Величина силы между двумя зарядами зависит от их размера, расстояния друг от друга и вещества, в котором они находятся.
  5. В случае неподвижного заряженного тела магнитные поля, создаваемые постоянно движущимися внутри него элементарными зарядами, нейтрализуют друг друга, и магнитное поле практически отсутствует.

IV. Найдите в тексте английские эквиваленты.

  1. полный (общий) заряд __________________________________
  2. проводящая среда ______________________________________
  3. электрический ток ______________________________________
  4. свободный электрон ____________________________________
  5. изолятор ______________________________________________
  6. химическое соединение _________________________________
  7. противоположные заряды ________________________________
  8. одноименные заряды ____________________________________
  9. влияние _______________________________________________
  10. квадратное расстояние между _______________________________

В.Найдите в тексте русские эквиваленты следующих выражений.

  1. диэлектрическая проницаемость ___________________________________________
  2. в целом ____________________________________________
  3. в значительной степени ________________________________________
  4. в частности ___________________________________________
  5. в целом _____________________________________________
  6. тогда как ______________________________________________
  7. для создания силы притяжения ________________________________
  8. обратно пропорционально ___________________________________
  9. таким образом _________________________________________________
  10. Пруток полиэтиленовый
  11. _______________________________________

VI.Заполнить недостающие слова.

  1. Есть два типа, известные как положительные заряды и отрицательные заряды, которые существуют во всех _______ и во всех _______ материи _______ твердом, жидком и газообразном.
  2. Электроны могут быть удалены из атомов и превращены в _______ _______ в различных электрических явлениях.
  3. Положительные и отрицательные заряды _______ друг друга в большой степени, и никаких электрических эффектов нет.
  4. Твердые тела, жидкости и газы могут пропускать _______ электрический ток, если имеется достаточно _______ электронов или ионов.
  5. Полиэтилен заряжен положительно и _______ _______ сила на отрицательные заряды бумаги.
  6. Силы электростатического _______ и _______ между объектами вызваны _______ полями, связанными с ними.
  7. Сила пропорциональна _______ зарядов, а _______ пропорциональна квадрату расстояния между ними.

VII. При необходимости введите предлоги.

  1. Электроны можно удалить ___ атомов и заставить принимать участие ___ в различных электрических явлениях.
  2. Протоны, ___ с другой стороны, обычно находятся как часть ___ кластера ___ протонов, нейтронов и электронов, известных как ион.
  3. Заряды можно переносить ___ один материал ___ другой ___ трением их друг о друга.
  4. Исследование ___ этих чистых стационарных зарядов и их влияния ___ друг на друга составляет ___ предмет ___ статического электричества или электростатики.
  5. Невозможно найти материал, отталкивающий ___ полиэтилен и ткань.
  6. Это приводит к ___ явлению, называемому электростатической индукцией.
  7. Величина ___ силы между двумя зарядами зависит ___ их размера, расстояния друг от друга и вещества, из которого они состоят ___.

VIII. Определите, истинны ли предложения или нет.

  1. Электричество и все его наблюдаемые эффекты являются результатом свойств стационарных электрических зарядов.
  2. Электроны нельзя удалить из атомов.
  3. Протоны обычно находятся в составе кластера протонов, нейтронов и электронов, известного как ион.
  4. Жидкости и газы не могут проводить электрический ток даже при наличии достаточного количества свободных электронов.
  5. Статическое электричество можно получить, протерев изоляционный материал, например, полиэтиленовый стержень, сухой тканью.
  6. Легко найти материал, отталкивающий как полиэтилен, так и ткань.
  7. Вакуум, который не может подвергаться поляризации, имеет самую низкую диэлектрическую проницаемость, называемую диэлектрической проницаемостью свободного пространства.

IX. Практикуйтесь с кем-нибудь, кто спрашивает и отвечает.

  1. От чего возникает электричество и все его наблюдаемые эффекты?
  2. Как можно перенести заряды с одного материала на другой?
  3. Могут ли твердые вещества, жидкости и газы проводить электрический ток?
  4. Как можно производить статическое электричество?
  5. Можно ли найти материал, отталкивающий одновременно полиэтилен и ткань?
  6. Какие силы электростатического притяжения и отталкивания между заряженными объектами вызваны?
  7. От чего зависит величина силы между двумя зарядами?
  8. Какие отношения известны как закон Кулона?
  9. Какова диэлектрическая проницаемость вещества?

Х.Задайте вопросы к следующим предложениям.

  1. Есть два типа: положительный заряд и отрицательный заряд. (Дизъюнктивное)
  2. Электроны можно удалить из атомов и заставить участвовать в различных электрических явлениях. (Общие)
  3. Положительный и отрицательный заряды в значительной степени компенсируют друг друга. (Общие)
  4. Это результат явления, называемого электростатической индукцией. (Специальный)
  5. В отличие от зарядов испытываю силу притяжения.(Альтернатива)
  6. Силы электростатического притяжения и отталкивания между заряженными объектами вызываются связанными с ними электрическими полями. (Что…?)

XI. Продиктуйте своим однокурсникам следующие предложения на английском языке. Проверьте их вместе.

  1. Все вещества состоят из атомов, которые состоят из ядра и вращающихся электронов.
  2. Электроны можно удалить из атомов и заставить участвовать в различных электрических явлениях.
  3. Заряды можно переносить с одного материала на другой путем их трения.
  4. Силы электростатического притяжения и отталкивания между заряженными объектами вызываются связанными с ними электрическими полями.

XII. Диктант-перевод.

1. Твёрдые тела, жидкости и газы могут проводить электрический ток, если имеется достаточное количество электронов или содержащих.

2. В изоляторах электроны слишком жестко фиксируются химическими соединениями, чтобы иметь возможность двигаться, и материал обычно не проводит электричество.

3. Противоположные заряды таким образом испытывают силу притяжения, в то время как одноименные заряды отталкиваются.

4. Сила пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними — отношение, известное как Кулона.

.

ЭЛЕКТРОНИКА И ЭЛЕКТРОНИКА

Электротехника и электроника — самая большая и разнообразная область инженерии. Среди наиболее важных предметов в этой области — электроэнергетика и оборудование, электронные схемы, системы управления, компьютерный дизайн, сверхпроводники, твердотельная электроника, медицинские системы визуализации, робототехника, лазеры, радары, бытовая электроника и волоконная оптика. Несмотря на свое разнообразие, электротехника можно разделить на четыре основных направления: электроэнергетика и машиностроение, электроника, связь и управление, а также компьютеры.

Электроэнергетика и машины

Область электроэнергетики связана с проектированием и эксплуатацией систем для выработки, передачи и распределения электроэнергии. С конца 1970-х годов инженеры в этой области осуществили несколько важных разработок. Одним из них является способность передавать мощность при чрезвычайно высоких напряжениях как в режиме постоянного (DC), так и в режиме переменного (AC) тока, пропорционально уменьшая потери мощности.Другой — это управление в реальном времени генерацией, передачей и распределением электроэнергии с использованием компьютеров для анализа данных, возвращаемых из энергосистемы на центральную станцию, и тем самым оптимизируя эффективность системы во время ее работы.

Значительным достижением в разработке электрического оборудования стало внедрение электронных средств управления, которые позволяют двигателям переменного тока работать с переменной скоростью, регулируя частоту подаваемого в них тока. Таким образом, двигатели постоянного тока также работают более эффективно.

Электроника

Электронная инженерия занимается исследованием, проектированием, интеграцией и применением схем и устройств, используемых для передачи и обработки информации. Информация в настоящее время генерируется, передается, принимается и хранится в электронном виде в беспрецедентном в истории масштабе, и есть все признаки того, что взрывные темпы роста в этой области будут продолжаться.

Инженеры-электронщики проектируют схемы для выполнения конкретных задач, таких как усиление электронных сигналов, сложение двоичных чисел и демодуляция радиосигналов для восстановления информации, которую они несут.Цепи также используются для генерации сигналов, полезных для синхронизации и отсчета времени, как в телевидении, и для исправления ошибок в цифровой информации, как в телекоммуникациях.

До 1960-х годов схемы состояли из отдельных электронных устройств — резисторов, конденсаторов, катушек индуктивности и электронных ламп — собранных на шасси и соединенных проводами, образуя громоздкий корпус. Революция в электронике 1970-х и 1980-х годов установила тенденцию к интеграции электронных устройств на одном крошечном кристалле из кремния или другого полупроводящего материала.В сложной задаче производства этих чипов используются самые передовые технологии, включая компьютеры, электронно-лучевую литографию, микроманипуляторы, ионно-лучевую имплантацию и сверхчистую среду.

Связь и управление

Инженеры

работают над системами управления, начиная от повседневных, управляемых пассажирами, например тех, которые управляют лифтом, до экзотических, таких как системы удержания космического корабля на курсе. Системы управления широко используются в самолетах и ​​кораблях, в военных системах управления огнем, при передаче и распределении энергии, в автоматизированном производстве и в робототехнике.

Компьютеры

Компьютерная инженерия в настоящее время является наиболее быстрорастущей отраслью. Электроника компьютеров привлекает инженеров к разработке и производству систем памяти, центральных процессоров и периферийных устройств. Область информатики тесно связана с компьютерной инженерией; однако задача сделать компьютеры более «умными» (искусственный интеллект) путем создания сложных программ или разработки машинных языков более высокого уровня или других средств обычно рассматривается как цель информатики.

Одним из современных направлений компьютерной инженерии является микроминиатюризация. Инженеры стараются размещать все большее и большее количество элементов схемы на меньших и

элементах.

микросхемы меньшего размера. Другая тенденция заключается в увеличении скорости компьютерных операций за счет использования параллельных процессоров и сверхпроводящих материалов.

АППАРАТНОЕ ОБЕСПЕЧЕНИЕ

Что такое оборудование? Словарь Вебстера дает нам следующее определение аппаратного обеспечения — механических, магнитных, электронных и электрических устройств, составляющих компьютерную систему.

Компьютерное оборудование можно разделить на четыре категории:

1. вводное оборудование; 2. обрабатывающее оборудование; 3. складское оборудование; 4. выходное оборудование. Некоторые из них представлены здесь.

Оборудование ввода

Назначение оборудования ввода — сбор данных и преобразование их в форму, пригодную для компьютерной обработки. Наиболее распространенное устройство ввода — клавиатура. Очень похоже на пишущую машинку. Мышь — это портативное устройство, подключенное к компьютеру небольшим кабелем.Когда мышь перемещается по коврику для мыши, курсор перемещается по экрану. Когда курсор достигает желаемого места, пользователь обычно нажимает кнопку мыши один или два раза, чтобы сигнализировать о выборе меню или команде компьютеру.

Световое перо использует светочувствительный фотоэлемент, чтобы сообщить компьютеру положение экрана. Другой тип оборудования для ввода — это оптико-электронный сканер, который используется для ввода графики и набора символов. Микрофон и видеокамера также могут использоваться для ввода данных в компьютер.Электронные фотоаппараты становятся очень популярными среди потребителей благодаря относительно невысокой цене и удобству.

Обрабатывающее оборудование

Аппаратные средства обработки предназначены для получения, интерпретации и управления выполнением программных инструкций, предоставленных компьютеру. Наиболее распространенными компонентами аппаратного обеспечения обработки данных являются центральный процессор и основная память.

Центральный процессор (ЦП) — это мозг компьютера.Он считывает и интерпретирует инструкции программного обеспечения и координирует действия по обработке, которые должны выполняться. От конструкции ЦП зависит мощность обработки и скорость компьютера, а также объем оперативной памяти, которую он может эффективно использовать. С хорошо продуманным процессором в вашем компьютере вы можете выполнять сложные задачи за очень короткое время.

Память — это составная система компьютера, в которой хранится информация. Компьютерная память бывает двух типов: RAM и ROM.

RAM (оперативная память) — энергозависимая память компьютера, используемая для создания загрузки и выполнения программ, а также для управления данными и их временного хранения;

ROM (постоянное запоминающее устройство) — это энергонезависимая немодифицируемая компьютерная память, используемая для хранения запрограммированных инструкций для системы.

Чем больше памяти у вас в компьютере, тем больше операций вы можете выполнять.

КТО ОБНАРУЖИЛ ЭЛЕКТРИЧЕСТВО?

История открытия электричества связана с именем греческого философа Фалеса.История гласит, что однажды Фалес потер рукав янтаря и обнаружил, к своему большому удивлению, что он притягивает небольшие кусочки засохших листьев. После дальнейших экспериментов он пришел к выводу, что этой силой притяжения обладает только янтарь. Он назвал эту характеристику «электричеством», потому что по-гречески янтарь было электроном.

Великое открытие Фалеса оставалось диковинкой более двух тысяч лет. Затем было обнаружено, что этим любопытным свойством электричества обладают и многие другие вещества.Естественно, люди прошлого понятия не имели, что такое электричество. Они думали об этом как о «лучах» или «потоке», исходящих от натертого материала. Были ученые, которые считали электричество своего рода «жидкостью», которая течет по проводам, как вода по трубам. Позже многие из них узнали, что электричество состоит из каких-то крошечных частиц. Таким образом они пытались разделить электричество на отдельные частицы. Было несколько попыток взвесить отдельную частицу электричества и вычислить ее электрический заряд.Это была одна из самых деликатных работ по взвешиванию, когда-либо выполнявшихся человеком, поскольку отдельная электрическая частица весит всего лишь около полмиллионной доли миллионной доли миллионной доли миллионной доли фунта. Чтобы получить фунт, этих частиц потребуется больше, чем капель воды в Атлантическом океане. Теперь мы знаем, что эти электрические частицы — электроны.

Когда большое количество электронов отрывается от своих атомов и движется по проводу, мы описываем это действие, говоря, что электричество течет через провод, а электрическая «жидкость», о которой говорили ученые прошлого, есть не что иное, как протекающие электроны. по проволоке.Многие ученые работали в области электричества, стараясь сделать жизнь людей хорошей и счастливой.

МИКРОВОЛНОВАЯ ОБРАБОТКА

Проект по микроволновой обработке пищевых продуктов выполняется исследовательскими группами Бристольского университета.

За последние пять лет работа была сосредоточена на системах обработки и консервирования для безопасного и эффективного производства пищевых продуктов, включая пастеризацию и стерилизацию в микроволновой печи.

Общая цель этого проекта будет заключаться в установлении понимания взаимосвязи между микроволновой печью и параметрами пищевых продуктов во время обработки и поддержания качества и безопасности пищевых продуктов. Это будет достигнуто путем разработки компьютерных моделей процесса в сочетании с экспериментальными исследованиями в масштабе опытной установки.

Наиболее перспективными коммерческими приложениями для микроволновой обработки в области пастеризации являются:

1. Определить наиболее многообещающие операционные стратегии, необходимые с точки зрения мощности микроволн, частоты, времени обработки и конфигурации микроволнового резонатора, чтобы гарантировать безопасность и качество пищевых продуктов;

2.Определить безопасный срок хранения продуктов для пастеризации в микроволновой печи;

3. Исследовать повышение давления и другие факторы, влияющие на отказ упаковки во время обработки;

4. Предоставление данных о составе, температуре и конфигурации сырья, необходимого для систем управления в программируемых микроволновых устройствах;

5. Предоставьте данные обработки о времени, мощности и распределении поля, необходимых для доведения определенного сырья до оптимального состояния для следующей операции обработки.

Примечания:

микроволновая печь — микроволновый в пересчете на — исходя из, на основе

у пилота — в масштабе опытного завода отказ — повреждение

перспективный — многообещающий закалять — делать

7. СТАНКИ-ИНСТРУМЕНТЫ

Станки используются для формовки металлов и других материалов.Материал, которому необходимо придать форму, называется заготовкой. Большинство станков теперь имеют электрический привод. Станки с электроприводом быстрее и точнее ручных инструментов: они были важным элементом в развитии процессов массового производства, так как позволяли изготавливать отдельные детали в больших количествах, чтобы их можно было взаимозаменяемо.

Все станки имеют приспособления для удержания как заготовки, так и инструмента, а также для точного управления перемещением режущего инструмента относительно заготовки.Большинство операций механической обработки выделяют большое количество тепла и используют охлаждающие жидкости (обычно смесь воды и масел) для охлаждения и смазки.

Станки обычно обрабатывают материалы механически, но в последнее время были разработаны и другие методы обработки. Они включают химическую обработку, искровую эрозию для обработки очень твердых материалов любой формы с помощью непрерывной искры высокого напряжения (разряда) между электродом и деталью. Другие методы обработки включали сверление с использованием ультразвука и резку с помощью лазерного луча.Числовое управление станками и гибкие производственные системы сделали возможным гибкое использование полных систем станков для производства целого ряда продуктов.

Пояснения к тексту:

Станки — станки

Заготовка — деталь

Искровая эрозия — электроискровая обработка

Диапазон — диапазон, диапазон

СОПРОТИВЛЕНИЕ И УСТОЙЧИВОСТЬ.

Каждый материал оказывает сопротивление прохождению через него электрического тока. Сопротивление проводника зависит от его материала. Это также зависит от его температуры. Материалы меняют значение сопротивления при изменении их температуры. Различные материалы также имеют разные температуры плавления. Хорошие проводники, такие как медь, серебро и алюминий, обладают очень низким сопротивлением, в то время как непроводники, такие как стекло, дерево и бумага, обладают очень высоким сопротивлением.Стойкость нихрома довольно высокая.

Сопротивление проводов и их удельное сопротивление имеют разные единицы. Единица измерения сопротивления называется ом в честь немецкого физика Ома.

Единицей измерения сопротивления является Ом, а единицей удельного сопротивления — Ом • м. Стандартный международный ом определяется как сопротивление, оказываемое постоянному электрическому току столбом ртути с поперечным сечением 1 кв. Мм и длиной 106,3 см при температуре 0 °.

Существует несколько факторов, определяющих электрическое сопротивление любого провода: а) материал, из которого он состоит; б) размер провода; в) его температура.

В более общем смысле сопротивление провода пропорционально его длине и обратно пропорционально его площади поперечного сечения (при условии, что температура проводника остается постоянной). Это закон Ома.

ЭЛЕКТРОСТАНЦИИ.

Электроэнергия вырабатывается на электростанциях.Главный блок электростанции состоит из первичного двигателя и генератора, который он вращает.

Для приведения в действие первичного двигателя требуется энергия. В настоящее время используется множество различных источников энергии. К этим источникам относятся тепло, получаемое при сжигании топлива, давление за счет потока воздуха (ветер), солнечное тепло и т. Д.

По типу энергии, используемой основным ходом: электростанции делятся на группы. Эти группы образуют тепловые, гидравлические (гидроэнергетические) и ветряные установки.Электростанции по типу тягача относятся к:

.

а) Паротурбинные установки, в которых паровые турбины служат в качестве первичных двигателей. Основные энергоблоки паротурбинных установок относятся к современному классу высокой мощности —
электростанций.

б) Установки с паровыми двигателями, в которых первичным двигателем является паровой двигатель поршневого типа.

В настоящее время крупных промышленных предприятий с такими тягачами не строится.Они используются только для местного электроснабжения.

в) Дизельные заводы; в них установлены дизельные двигатели внутреннего сгорания. Эти установки тоже маломощные, используются для местного электроснабжения.

г) Гидроэлектростанции используют водяные турбины в качестве первичных двигателей. Поэтому их называют гидротурбинными установками. Их основной энергоблок — гидрогенератор.

В современных ветроэлектростанциях используются различные турбины: эти станции, а также гидроэлектростанции малой мощности широко используются в сельском хозяйстве.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *