Содержание

Утепление каркасного дома своими руками: пошаговая инструкция

В предыдущей статье я описывал пошаговую инструкцию по сборке каркасного дома своими руками. Теперь же, мы рассмотрим инструкцию о том, как правильно его утеплить и изолировать от ветра и влаги, чтобы в процессе эксплуатации, он долгое время оставался надежной защитой от морозов в холодное время года, а также спасал от изнывающей жары летом.

Я не буду здесь описывать какой утеплитель лучше для каркасного дома, это отдельная тема, и она подробно рассмотрена в другой статье.

Но стоит отметить, что около 80% от общего количества каркасных домов, утепляются минеральной ватой или утеплителями на ее основе. Учитывая это, данная пошаговая инструкция, в основном, будет основываться именно на таком утеплении.

  • Помимо минеральной ваты, существует еще несколько типов утеплителей, в той или иной степени пригодных для использования их в качестве теплоизоляции каркасных домов, таких как эковата, пенополистирол, керамзит и другие.
    Об отличиях в технологии их использования мы поговорим в конце статьи.
  • Утепление каркасного дома стекловатой происходит точно также, как и утеплителями на основе минеральной ваты, поэтому отдельно рассматривать этот вид утеплителя не будем.
  • Минеральная вата, по сравнению с другими типами утеплителей, наиболее универсальный материал. Ею утепляют не только каркасные дома, но и любые другие. В качестве утеплителя она используется практически везде в строительстве частных домов.

Важно знать, что при работе с минеральной ватой, особенно в помещении, необходимо использовать средства индивидуальной защиты, такие как перчатки, очки и респиратор. Контакт с кожей может обернуться сильным зудом, покраснениями, возникновению аллергических реакций.

В принципе, утепление всех частей каркасного дома мало чем отличаются друг от друга, но все же есть некоторые нюансы, поэтому необходимо рассмотреть отдельно каждую часть.

Технология утепления пола, во многом зависит от типа фундамента, но так как большинство каркасных домов, в настоящее время, строятся на свайно-винтовом фундаменте, от этого мы и будем отталкиваться при теплоизоляции пола.

  1. Утепление пола каркасного дома, независимо от типа утеплителя, начинается с гидроизоляции. По мимо гидроизоляционной мембраны, нам еще необходимо под лагами пола соорудить конструкцию, которая будет держать, как гидроизоляционный материал, так и сам утеплитель, как показано на схеме.
  2. Если дом расположен высоко, относительно земли, и под него можно подлезть, то сначала под лагами пола натягивается гидроизоляционная мембрана и крепится мебельным степлером. Напуск полос гидроизоляции должен быть максимально герметичен, чтобы из-под пола не сквозило. Какой стороной внутрь, а какой наружу набивается материал – узнавайте у производителя.
  3. Так же снизу, поверх гидроизоляции пробивается доска. Размер доски и шаг монтажа особого значения не имеет, но не более 40-50см, лишь бы этого было достаточно, чтобы листы или полосы минеральной ваты не проваливались. Иногда доску набивают плотно, без зазоров, это усиливает конструкцию пола. Вот что в итоге должно получится: 
  4. В случае, если под дом подлезть нельзя, то под лаги сначала набивается доска, а затем изнутри каркасного дома на лаги крепится гидроизоляционная мембрана, как показано на фото.
  5. Когда основа для утеплителя готова, минеральная вата укладывается между лагами пола каркасного дома. Укладывать необходимо плотно, наличие пустот – не допускается. Режется минеральная вата острым ножом, можно использовать строительный, но всегда чуть больше необходимой длины, примерно на 1 см.
  6. Для удобства монтажа, расстояние между лагами выбирается заранее, в зависимости от утеплителя, в нашем случае, ширина плиты минеральной ваты – 60см. Это означает, что расстояние между лагами, в идеале, должно быть 58-59см.
  7. Толщина слоя утеплителя полностью зависит от региона, где строится каркасный дом, но в среднем составляет 15 см. Так же необходимо учитывать высоту лаг пола каркасного дома. Как правило, толщина всех слоев минеральной ваты, не превышает, а иногда даже немного меньше ширины доски или бруса, из которого они сделаны.
  8. Важным моментом в укладке минеральной ваты является то, что каждый слой, должен перекрывать стыки предыдущего, как показано на фото. Напуск должен быть не менее 15-20см.
  9. Поверх минеральной ваты, внутри каркасного дома на лаги, необходимо закрепить пароизоляционную мембрану. Она будет оберегать утеплитель от влаги изнутри, а также служить дополнительной ветрозащитой. Для того, чтобы она была герметично, стыки необходимо проклеить двусторонним скотчем, например.
  10. На пароизоляционную мембрану стелется фанера, OSB-плита, либо сшивается доска, которая будет основой для дальнейшей чистовой отделки.

Стоит отметить, что сама минеральная вата не является ветрозащитой, поэтому гидроизоляционную и пароизоляционную мембрану необходимо натягивать так, чтобы был напуск на стены, исключая попадание влаги и ветра между стеной и полом каркасного дома.

В каркасном доме, как и в любом другом, существует два вида стен — наружные, одна сторона которых располагается на улице, и внутренние, которые расположены полностью внутри дома. Так вот, утеплять необходимо и те и другие.

Стены каркасного дома можно утеплять как изнутри, так и снаружи, от этого используемые материалы и их количество не меняется.

Мы рассмотрим утепление изнутри, снаружи делается все точно также, только немного в другой последовательности.

Утепление наружных стен дома

Стоит сразу отметить, что при обшивке каркасного дома снаружи и изнутри своими руками, используются различные материалы, они могут быть отличными от тех, которые я описываю в данной инструкции. Так же может отличаться порядок действий, но в целом, получается практически одно и тоже, как на схеме. Это примерная схема, допустим, вместо OSB-плит, с одной стороны можно пробить обрешетку рейками или доской толщиной 25мм. Доска, как правило, пробивается через определенное расстояние — около 40см между осями, но стоит помнить, что в этом случае, немного пострадает жесткость стен.

Процесс утепления стен минеральной ватой своими руками, практически идентичен теплоизоляции пола, и производится следующим образом:

  1. Снаружи каркас обшивается OSB-плитами, с зазорами между ними, указанными производителем, как правило, это 2-3мм. После монтажа, зазоры можно запенить. Вот так это выглядит изнутри дома:
  2. Затем, так же снаружи, натягивается гидроизоляционная мембрана, которая будет защищать минеральную вату, каркас дома, а также листы OSB от наружной влаги, поверх которой будут производиться наружные отделочные работы, такие как монтаж сайдинга, например. Некоторые производители делают гидроизоляционные материалы с самоклеющимися полосами, для того, чтобы стык был более плотным. Если таких полос нет, желательно проклеить стыки двусторонним скотчем.
  3. Изнутри каркасного дома между стойками каркаса, которые, если Вы все сделали правильно, расположены на расстоянии 58-59см друг от друга, плотно вставляются листы минеральной ваты.
  4. Лучше использовать минеральную вату плотностью не менее 35-50кг/м3. Менее плотный утеплитель, будет оседать или скатываться в низ, что повлечет за собой появление пустот и мостиков холода. Как правило, производители на упаковке пишут, для чего какой материал можно использовать.
  5. Также, как и с полом, слои минеральной ваты должны быть уложены так, чтобы перекрыть предыдущий стык листов, минимум на 15-20см. Общая толщина утепления зависит от климатического пояса, но среднее значение, также 15см.
  6. После того, как весь утеплитель в стены уложен, необходимо залить монтажной пеной все мелкие пустоты, образованные на стыках досок и брусьев.
  7. Обязательным условием утепления минеральной ватой, является то, что изнутри дома, поверх утеплителя, необходимо натянуть пароизоляционную мембрану, которая защитит утеплитель от влаги, исходящей изнутри дома. Поверх которой чаще всего набиваются такие же листы OSB, как и снаружи, но можно использовать и доску, рейки и подобные материалы, в зависимости от дальнейшей отделки. Важным моментом в монтаже пароизоляционной мембраны является то, чтобы на внутренних углах ее не перетянуть, и пароизоляция полностью повторяла угол каркаса. Иначе, в будущем, трудно будет прибивать обшивку на углах.

Стоит отметить, что всю эту процедуру можно производить наоборот, сначала натянуть пароизоляционную мембрану изнутри, затем внутренний обшивочный материал, а сам процесс утепления стен минеральной ватой производить снаружи.

Утепление внутренних стен каркасного дома

Отличительными особенностями утепления внутренних стен каркасного дома являются:

  1. Утепление внутренних стен каркасного дома производится, в большей степени, для звукоизоляции. Поэтому, если у Вас есть возможность, лучше будет использовать звукоизоляционный материал. Но это не значит, что обычная теплоизоляционная минеральная вата, или другие типы утеплителей не подойдут.
  2. К утеплению внутренних стен нет таких жестких требований, как к наружным, поэтому гидроизоляционные и пароизоляционные материалы, в принципе, не требуются.
  3. В остальном, утепление происходит идентично наружным стенам каркасного дома.

Если нет возможности, или к звукоизоляции внутренних перегородок не предъявляется жестких требований, достаточно будет использовать такой же утеплитель, как и для наружных стен. Толщина теплоизолирующего слоя может быть гораздо меньше.

Утепление потолка каркасного дома, практически ничем не отличается от других типов домов с деревянными перекрытиями, и является одним из наиболее ответственных моментов теплоизоляции всего дома в целом.

Теперь давайте рассмотрим пошагово, как правильно утеплить потолок каркасного дома минеральной ватой:

  1. Эту процедуру лучше производить тогда, когда еще не до конца собрана крыша, чтобы она не мешала плотной укладке утеплителя сверху на потолок.
  2. Изнутри дома, на потолочные балки натягивается пароизоляционный материал, на который набивается доска, толщиной 25 мм, фанера, или все те же листы OSB. Шаг между соседними досками выбирается из того, как будет отделываться потолок, но чаще всего около 40 см между осями досок.
  3. Теперь сверху укладывается минеральная вата, все по тем же правилам, как и везде, без пустот, плотно и перекрывая швы предыдущего слоя — минимум на 15-20см. Важным моментом является то, что утеплитель необходимо укладывать полностью на весь потолок, включая напуск на всю ширину стен.
  4. Если чердачное пространство холодное и не используется для постоянного проживания, мембранные пленки поверх утеплителя стелить нет необходимости. Можно сразу зашить доской или фанерой, для того, чтобы удобно было ходить по ним.
  5. Когда утеплить потолок каркасного дома сверху нет возможности, он утепляется изнутри помещения. Утеплитель, в данном случае, необходимо «подвязать», чтобы он не падал. А после нашить пароизоляционный материал и доску или фанеру.

Так как теплый воздух имеет свойства подниматься вверх, при неправильном утеплении потолка или крыши, из дома будет уходить максимальное количество тепла.

Очень часто вместо потолка, а иногда и вместе с потолком, минеральной ватой утепляется и крыша каркасного дома. Это, как правило, делается в тех случаях, когда чердачное пространство жилое и отапливается.

Технология утепления практически не отличается от теплоизоляции потолка, за исключением того, что поверх утеплителя должен быть обязательно натянут гидроизоляционный материал, защищающий утеплитель от внешней агрессивной среды.

Вот так на схеме выглядит теплоизоляционный слой минеральной ваты на крыше каркасного дома:

Вот несколько особенностей, которые помогут облегчить процесс утепления своими руками:

  1. Крышу, также, как и потолок, удобнее утеплять снаружи, потому что монтаж минеральной ваты изнутри, во-первых, неудобен, ну а во-вторых, этот материал имеет свойства сыпаться на голову и лицо.
  2. После установки стропильной системы, снизу необходимо подшить пароизоляционный слой, на который так же, как и в случае с потолком, изнутри набить обшивочный материал, доску или фанеру.
  3. Теперь снаружи уложить листы утеплителя, придерживаясь все тех же правил, как и при утеплении других частей каркасного дома.
  4. Поверх утеплителя стелется гидроизоляционная мембрана, на которую уже набивается контробрешетка, обрешетка и кровельный материал.

Стоит отметить, что утеплять крышу можно и изнутри, если она полностью собрана. Но это гораздо неудобнее, потому что придется придумывать какие-то временные крепления, до натягивания пароизоляционного материала, чтобы утеплитель не вывалился.

Все подготовительные работы по теплоизоляции каркасного дома, независимо от типа утеплителя, ничем не отличаются. Отличия, да и то незначительные, в укладке самого утеплителя, о которых далее и пойдет речь.

Теперь рассмотрим основные отличия утепления другими материалами, которые также могут быть использованы в качестве теплоизоляции для каркасных домов.

Утепление пенополистиролом (пенопластом) и ЭППС

Если покопаться в интернете, Вы найдете множество споров по поводу утепления пенопластом не только домов из дерева, но и остальных. Действительно, пенопласт для каркасных домов — не самый лучший вариант, хотя и будет самым теплым, при одинаковой толщине утеплителя, а почему — это уже отдельная тема для разговора.

Процесс утепления пенопластом и экструдированным пенополистиролом практически ничем не отличается, поэтому их можно объединить. Вот некоторые особенности пенополистирола и утеплителей на его основе:

  1. Пенопласт не всегда ложится между лагами так плотно, как минеральная вата, поэтому все щели и пустоты необходимо убрать, используя монтажную пену или похожие материалы.
  2. Пенополистирол – горючий материал, это необходимо помнить и исключить соприкосновения с ним даже потенциальных источников горения.
  3. При использовании пенопласта, необходимо позаботиться об улучшенной вентиляции, потому что этот материал практически не пропускает воздух.
  4. Несмотря на то, что пенополистирол практически не пропускает и не впитывает влагу, его нельзя оставлять единственной гидроизоляцией дома. Гидроизоляционные и пароизоляционные слои все равно должны присутствовать, потому что они защищают не только утеплитель, но и само дерево, из которого собран каркас дома.
  5. Пенополистирол очень любят грызуны, которые проделывают свои ходы в нем, поэтому необходимо позаботиться о том, чтобы они не добрались до него.

Это основные правила и отличия использования пенополистирольных плит и утеплителей на их основе. В остальном все делается точно также, как и в случае утепления минеральной ватой.

Особенности утепление каркасного дома эковатой

Эковата — относительно новый материал для утепления не только каркасных домов. Она может быть использована в качестве утеплителя, практически во всех областях частного строительства, в том числе и каркасного.

  1. Несмотря на то, что утепление эковатой можно произвести без специального оборудования, все же я бы не советовал так делать. Во-первых, потому что с помощью специального оборудования эковата наноситься более равномерно и задувает все пустоты. Во-вторых, приготовленная эковата вручную, имеет менее хорошие характеристики, как по усадке, так и по теплоизоляции.
  2. Эковата очень хорошо впитывает влагу, поэтому к гидроизоляционным и пароизоляционным материалам, а также их монтажу, необходимо подходить с особой ответственностью.
  3. Наносить эковату необходимо с запасом, потому что она даст усадку со временем, до 10-15%.
  4. При ее нанесении необходимо пользоваться средствами индивидуальной защиты.

Стоит отметить, что при утеплении каркасного дома эковатой, необходимо нанимать ответственных и высококвалифицированных специалистов, которые учтут все ее особенности при монтаже.

Утепление каркасного дома керамзитом

Эту технологию утепления в настоящее время используют крайне редко, потому что сейчас огромный выбор материалов с гораздо лучшими характеристиками, но все же я расскажу немного о ней.

  1. Керамзит в сухом виде, в качестве утеплителя, можно использовать либо для утепления пола, либо потолка, также им возможно утеплять межэтажные перекрытия. Использование его в стенах – проблематично, да и, на мой взгляд, не оправдано.
  2. Очень часто, утепление керамзитом сочетают, например, с опилками, золой и т.п.
  3. Отличие утепления керамзитом в том, что пол, и потолок, снизу под лагами, необходимо пробить либо доской в стык, либо какими-нибудь фанерными материалами.
  4. Керамзит лучше использовать мелкой фракции, тем самым будет меньше пустот.

Помимо описанных мной, существует еще множество материалов и способов утепления каркасных домов своими руками. Но все они на столько похожи, что описывать каждый из них – не имеет особого смысла.

Утепление стен каркасного дома — утепление каркасных стен

Легкие, быстро возводимые и экономичные каркасные дома уже много лет пользуются популярностью в Северной Европе, США и Канаде. В нашей стране каркасное домостроение начало развиваться лишь в последние десятилетия, когда строительная отрасль освоила современные теплоизоляционные материалы.

Лучше всего для утепления каркасного дома подходят плиты ПЕНОПЛЭКС КОМФОРТ®:

  • Низкая теплопроводность плит ПЕНОПЛЭКС КОМФОРТ® позволяет сэкономить материал и, соответственно, снизить расходы на утепление дома;
  • Нулевое водопоглощение — одно из важнейших свойств утеплителя. Влажная теплоизоляция перестает сберегать тепло, от сырости заводится грибок и плесень, которые постепенно разрушают конструкции дома и вредны для здоровья;
  • Прочность материала на сжатие помогает избежать усадки и деформации при утеплении стен, полов, цоколя и фундамента;
  • Паронепроницаемость утеплителя — надежная защита дома от воздействия окружающей среды, в том числе от влаги. «Дышащие стены» — это миф. Основные «органы дыхания» дома — окна и системы вентиляции;
  • Возможность монтажа без мостиков холода поверх стоек дома. Образуется единый теплоизоляционный контур, что гарантирует высокие показатели тепловой защиты дома;
  • ПЕНОПЛЭКС КОМФОРТ® — безопасный и экологичный материал. Он не содержит мелких волокон, пыли, фенолформальдегидных смол и других вредных веществ.

Теплоизоляция каркасного дома плитами ПЕНОПЛЭКС КОМФОРТ® обеспечивает комфортный микроклимат и гарантирует долговременный безремонтный срок службы всех конструкций здания.

1. Утепление стен

  1. Внутрення отделка (ОСП/ЛВЛ плита)
  2. Вертикальный несущий брус
  3. ПЕНОПЛЭКС КОМФОРТ®
  4. Внешняя теплоизоляция ПЕНОПЛЭКС КОМФОРТ®
  5. Внешний отделочный слой

2. Примыкание стены к фундаменту (зона цокольного этажа)

  1. Внутрення отделка (ОСП/ЛВЛ плита)
  2. Вертикальный несущий брус каркаса
  3. Обрешетка антисептированная
  4. Внешняя теплоизоляция ПЕНОПЛЭКС КОМФОРТ®
  5. Вагонка
  6. Плиты ПЕНОПЛЭКС КОМФОРТ® внутри каркаса
  7. Нижняя направляющая доска
  8. Изолон
  9. Фундаментная плита
  10. ПЕНОПЛЭКС КОМФОРТ®

Таблица «Требуемая толщина «ПЕНОПЛЭКС» для утепления стен каркасных домов»

Города

Толщина «ПЕНОПЛЭКС»
мм

Анадырь

150

Архангельск

110

Астрахань

80

Барнаул

110

Белгород

90

Благовещенск

120

Великий Новгород

100

Владивосток

100

Владикавказ

80

Владимир

100

Волгоград

90

Вологда

110

Воронеж

90

Грозный

80

Екатеринбург

110

Ижевск

110

Иркутск

120

Казань

110

Калининград

90

Калуга

100

Кемерово

110

Кострома

100

Краснодар

70

Красноярск

110

Курган

110

Курск

90

Липецк

90

Магадан

130

Махачкала

80

Москва

100

Мурманск

120

Нальчик

80

Нижний Новгород

100

Новосибирск

120

Омск

110

Орел

100

Оренбург

100

Пенза

100

Пермь

110

Петрозаводск

110

Петропавловск — Камчатский

110

Псков

100

Ростов – на – Дону

80

Рязань

100

Салехард

150

Самара

100

Санкт-Петербург

100

Саранск

100

Саратов

100

Смоленск

100

Ставрополь

80

Сыктывкар

120

Тамбов

100

Тверь

100

Томск

120

Тула

100

Тюмень

110

Улан-Удэ

120

Ульяновск

100

Уфа

100

Хабаровск

110

Чебоксары

110

Челябинск

110

Чита

120

Элиста

80

Южно-Сахалинск

110

Якутск

160

Ярославль

100

Утеплитель для каркасного дома какой лучше использовать, как выбрать

В каркасном доме необходимо максимально утеплить все поверхности: пол, кровлю, фундамент и, конечно, стены. Многие останавливаются только на утеплении стен, а потом чувствуют, как тепло уходит через другие поверхности. Если вы хотите жить в доме зимой, толщина утеплителя должна составлять не менее 15 см для стен, 20 см для полов, 30 см для кровли.

Для стен и кровли оптимально подходят пенополистирол и минвата, для фундамента и цоколя — только пенополистирол. Также следует помнить, что больше всего тепла уходит через стены и кровлю, поэтому их лучше утеплить в первую очередь. Если дом уже построен, придется сделать капитальный ремонт, чтобы провести монтаж.

Какое утепление лучше подойдет для каркасного дома? Одним из популярных способов является перекрестная технология, когда у стены есть два каркаса: основной, с вертикальными стойками, и перекрестный, с горизонтальными. Тогда снижается вероятность усадки и появления мостиков холода.

Кроме того, стены чаще утепляют снаружи: внутренний монтаж практически не используется, проигрывая наружному по ряду параметров.

Если вы выбрали пенополистирол, вам понадобится клей для пенопласта, монтажная пена, нож, клейкая лента, рейки с сечением 20 на 30 мм. Последовательность строительных работ такова:

  • Стоит дождаться хорошей погоды: чтобы дождя не было минимум несколько дней, а солнце не светило слишком ярко.
  • Сначала нанесите клей на пенополистирольные плиты: по периметру и прямо в центр.
  • Затем распределите первый слой плит между рейками. Если нужно, подрезайте их или заполняйте пенополистиролом зазоры.
  • Вбейте в плиты пластиковые дюбеля-грибки: в углы и по центру.
  • Залейте щели и трещины монтажной пеной.
  • Приступайте к укладке второго слоя. Следите, чтобы стыки не пересекались со стыками первого слоя. Все щели опять залейте пеной.
  • Сверху закрепите пароизоляционную пленку для дополнительной защиты от потери тепла. В случае с пенополистиролом достаточно одного слоя.
  • Прикрепите на пленку рейки на саморезах: они создают зазор, который позволяет удалять воду. Также с помощью реек можно выровнять поверхность. Располагайте их на нужном уровне, подкладывайте фольгу при необходимости.
  • Заключительный этап — отделка: декоративной штукатуркой или фасадной плиткой.
Для фундамента или кровли техника будет несколько отличаться из-за особенностей конструкций. Например, фундамент нужно откопать от грунта, дать ему высохнуть, а только потом приступать к работе. Если фундамент свайный, придется сделать специальный каркас, на котором будут крепиться плиты пенополистирола.

Конечно, можно использовать другой утеплитель для каркасного дома. Но если вы не знаете, как выбрать оптимальный материал, мы советуем использовать пенополистирол. Его легко монтировать самостоятельно, без специального оборудования, а после установки вы сможете сэкономить на отоплении и жить в доме в любое время года.

Применение материалов URSA — каркасные стены

Каркасный дом не возводят без утеплителя. В основе конструкции такого здания – деревянные стойки и балки, листы фанеры или OSB. Без изоляции уровень теплозащиты каркасного дома будет не выше, чем у картонного кукольного домика.

От Скандинавии до Канады: вкратце о каркасной технологии

Технология строения домов из деревянного каркаса пришла к нам из стран Скандинавии и Западной Европы. Фахверковые каркасные дома возводили еще в XV веке в Германии. Спустя пару столетий эти дома постепенно стали появляться и в других странах Европы.

Такие здания возводятся быстрее и дешевле традиционных кирпичных домов. Их стены имеют прочную и легкую конструкцию. При этом они защищают от морозов даже в условиях долгой и суровой зимы.

Несколько веков назад для заполнения пространства между балками использовалась глина вперемешку с соломой и камышом. В современных каркасных конструкциях применяются, конечно, другие материалы. Чаще всего это минеральная изоляция. Именно она обладает необходимыми свойствами: хорошо сохраняет тепло и не деформируется при монтаже.

Минеральная звуко- и теплоизоляция URSA

  • Защищает дом от холода и жары, сохраняя теплый микроклимат в помещении.
  • Повышает долговечность деревянной конструкции.
  • Плотно прилегает к каркасу и не образует мостиков холода на стыках.
  • Повышает уровень звукоизоляции дома за счет высокого звукопоглощения.
  • Безопасна для здоровья человека и окружающей среды, способствует поддержанию здорового микроклимата в помещении. Не подвергается гниению, не поражается грибком, плесенью и вредителями.
  • Этот утеплитель для каркасного дома является негорючим строительным материалом.
  • Обеспечивает минимальные затраты на транспортировку и монтаж.
  • Удобна в использовании – плиты и рулоны самостоятельно может установить один человек.

А самое главное – продукты URSA, рекомендуемые как утеплитель для каркасных стен, соответствуют технологическим требованиям, которые предъявляются к каркасной изоляции.

Свойства надежной теплоизоляции для каркасного дома

  • Высокий уровень теплозащиты и отсутствие мостиков холода в местах прилегания плит друг к другу и каркасу
  • Повышенная упругость для распора внутри стены и формостабильность
  • Небольшой вес

Особое внимание на упругость

Утеплитель в каркасных домах по технологии закрепляется враспор между стойками каркаса без дополнительной фиксации. Поэтому важно, чтобы материал был упругим и сохранял свои свойства как можно дольше.

Повышенная упругость волокон и лучшая формостабильность позволяют теплоизоляции URSA надежнее держаться в конструкции. Прочное волокно и усиленная структура позволят материалу долгие годы сохранять свои свойства.

Производитель дает официальную гарантию 50 лет на то, что утеплитель на протяжении всего этого срока сохранит свою толщину, не даст усадку в конструкции и сохранит теплоизоляционные свойства.

Монтаж утеплителя в каркасные стены

Теплоизоляция устанавливается между стойками каркаса враспор. Она укладывается в несколько слоев. Со стороны помещения нужно обязательно установить пароизоляционную пленку, а со стороны улицы – супердиффузионную мембрану.

Стыки на пленках изолируют фольгированным скотчем. Снаружи каркас зашивается любым подходящим облицовочным материалом.

Советы технического специалиста

  • Отрезайте утеплитель по ширине на 1–2 см больше, чем расстояние между стойками, чтобы плотно зафиксировать материал враспор без креплений
  • Если необходимо уложить слой утеплителя толщиной 100 или 150 мм, лучше выбрать теплоизоляцию нужной толщины, а не укладывать в несколько слоев маты по 50 см
  • Для утепления каркасных стен подходит теплоизоляция и в плитах, и в рулонах. В первую очередь стоит обращать внимание на коэффициент теплопроводности – чем меньше, тем лучше

Какая толщина утеплителя должна быть в каркасной стене? — URSA Россия

Каркасные дома представляют один из наиболее распространенных вариантов строительства загородного дома. Каркасные технологии строительства известны уже более 5 веков и в настоящее время являются основным типом малоэтажного строительства в странах Скандинавии, США и Канады. Популярность каркасного домостроения возрастает с каждым годом и в нашей стране.

Современные технологии строительства и применяемые при строительстве материалы позволяют строить каркасные дома, которые не уступают каменным домам по долговечности и надежности. Основными преимуществами каркасного домостроения являются: быстровозводимость, относительно низкая стоимость, всесезонность строительных работ и практически полное отсутствие мокрых процессов при возведении коробки дома. Большинство энергоэффективных зданий в настоящее время возводится по каркасной технологии.

Стены каркасных зданий состоят из несущего каркаса, который может быть выполнен из деревянного бруса, бруса из клееного шпона (ЛВЛ) или тонкостенных профилей из оцинкованной стали (ЛСТК) с заполнением пространства между стойками каркаса плитами из эффективного утеплителя (теплоизоляции). Изнутри и снаружи каркас закрывается отделочными изделиями, перечень которых широк и разнообразен.

Утеплитель (теплоизоляция) служит для уменьшения потерь тепловой энергии на отопление. Чем толще слой теплоизоляции, тем меньшими оказываются потери тепла и, следовательно, в здание требует меньшего расхода энергоресурсов (топливо).

Чем меньше потери тепла в здании, тем меньшее количество тепловой энергии требуется подвести к зданию от источника тепла.

Таким образом, утепление ограждающих конструкций приводит к уменьшению потребляемой в здании энергии и, следовательно, к сокращению эксплуатационных затрат на отопление.

Однако, чем толще слой утеплителя, тем большими оказываются капитальные затраты. Таким образом, еще на этапе проектирования следует произвести экономическую оценку вариантов технических решений.

Капитальные затраты, как правило, значительны, но выделяются единовременно, а экономический эффект от дополнительного утепления будет «набегать» ежегодно, но меньшими порциями. Следовательно, существует некоторая оптимальная толщина слоя теплоизоляции, характеризующая экономическую эффективность принятого решения. Ее можно определить путем оценки экономической эффективности различных вариантов утепления и сравнения их между собой.  

Рассмотрим типовой каркасный дом площадью 150 м2 с площадью наружных стен 175 м2. В качестве несущего каркаса рассмотрим наиболее распространенный вариант – деревянный брус сечением 150×50 мм. Отопление в доме индивидуальное, от газового котла с КПД 90 %.    Месторасположение объекта: Московская область.

В качестве слоя теплоизоляции примем изделия теплоизоляционные из минеральной ваты на синтетическом связующем URSA TERRA 34 PN.

Схематичное изображение рассматриваемой конструкции наружной стены представлено на рисунке 1.

Рисунок 1 – Схематичное изображение рассматриваемой конструкции наружной стены каркасного дома

Рассмотрим как влияет увеличение толщины теплоизоляции на первоначальные вложения (инвестиции), потери тепловой энергии через наружные стены, эксплуатационные затраты на компенсацию потерь тепла и сроки окупаемости инвестиций.   

Вариант стены с толщиной утеплителя 50 мм примем в качестве базового (минимально-допустимого) варианта. Стена каркасного дома может быть выполнена без утеплителя, но такой дом, как правило, не подходит для круглогодичного проживания или окажется некомфортным. По этой причине вариант стены каркасного дома без теплоизоляции в даннй статье не рассматривается.

Разница эксплуатационных затрат, достигаемая за счет дополнительного утепления наружных стен в течение одного  отопительного периода показана на рисунке 2:

Рисунок 2 – Расходы на компенсацию потерь тепла через стены в течение одного отопительного сезона

Срок окупаемости вложений в теплоизоляцию стен можно расчитать с учетом роста тарифов на энергоносители и дисконтирования будущих денежных потоков.

Средняя величина относительного роста тарифов на тепловую энергию для населения России составляет примерно 12 % в год.

Мерой дисконтирования будущих денежных потоков можно выбрать средний уровень инфляции за определенный промежуток времени (например, за 5 или 10 последних лет), ставку рефинансирования Центрального Банка, доходность альтернативных вложений (например, открытие вклада в банке на депозитный счет), прочие факторы, влияющие на величину будущих денежных потоков.

Определим срок, по истечении которого вложения в дополнительное утепление стен окупятся (по сравнению с базовым вариантом утепления 50 мм).

Результаты расчета представлены  на рисунке:

Рисунок 3 – График зависимости срока окупаемости вложений в теплоизоляцию стен каркасного дома от толщины слоя теплоизоляции

Как следует из этих данных самым лучшим вариантом является применение толщины теплоизоляции 150 мм. При данный толщине срок окупаемости вложений оказывается минимальным (менее 5 лет).

Кроме того, нужно учесть, что при толщине стоек каркаса 150 мм и толщине утеплителя 150 мм обеспечивается плотное прилегание ветрозащитного слоя к утеплителю (рис. 2). В этом случае при прохождении воздуха в воздушной вентилируемой прослойке не будет наблюдаться провисания ветрозащитной мембраны.

Увеличение срока окупаемости вложений при толщине слоя теплоизоляции 200 мм обусловлено необходимостью устройства дополнительного контрбруса (сечением 50×50 мм) и размещения между ним второго (наружного) слоя теплоизоляции толщиной 50 мм. Следует отметить, что при таком варианте утепления несущие стойки каркаса оказываются в зоне положительных температур, что увеличивает их долговечность. При однослойном утеплении стен каркасного дома различные участки стоек оказываются под воздействием различных температур, что вызывает их деформацию. При наличии средств для повышения надежности и долговечности элементов каркаса рекомендуется производить утепление именно таким образом.

Авторы:

Горшков А. С., кандидат технических наук, директор Учебно-научного центра «Мониторинг и реабилитация природных систем» ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого»

Керник А.Г., руководитель группы технической поддержки продаж ООО «УРСА Евразия»

Утепление каркасного дома: пошаговая инструкция

Каркасные дома – это прекрасный вариант быстрой и недорогой индивидуальной застройки. Однако, несмотря на эти достоинства, один существенный недочет у них имеется: с учетом климатических особенностей на большей части страны они требуют конкретной «доработки» в виде масштабных работ по утеплению.  Каким образом и с помощью чего можно осуществить эту задачу? Вариантов может быть несколько. Имеет смысл остановиться на наиболее популярных способах утепления каркасного дома.

Содержание:

  1. Варианты утепления каркасного дома

 

Варианты утепления каркасного дома

Утепление каркасного дома минеральной ватой

Минеральную (каменную) вату в роли теплоизоляционного материала выбирают достаточно часто.

  • Объясняется это ее великолепными свойствами шумопоглощения и сохранения тепла. Она является экологичным и негорючим материалом, а ее пятисантиметровый слой с легкостью заменит кирпичную кладку почти в 60 см шириной (если сравнивать их по теплоизоляционным характеристикам).
  • Главная задача при монтаже базальтовой ваты – это грамотная и надежная защита роквула от влаги.
  • Образование конденсата на материале сведет на нет все его замечательные характеристики.

Поэтому если для утепления закуплен такой недешевый материал как минвата, то экономить на специальных мембранах и пароизоляционных пленках не имеет смысла.

Утепление каркасного дома фото

Последовательность работ при монтаже каменной ваты

  • Плиты базальтовой ваты помещаются в ячейки, образованные каркасом. Он собирается с таким расчетом, чтобы его вертикальные направляющие имели шаг строго в 60 см. Это ширина материала, выпускаемого в рулоне. Нарезанная плита должна входить между стойками немного с усилием и держаться плотно, без провисаний. Что касается толщины утепления каркасного дома, то она индивидуальна в зависимости от региона страны. В районах с более мягким климатом допускается наслоение в 10 см. Там, где зимы суровые, потребуется монтаж прослойки в 15-20 см.
  • Чтобы исключить образование «мостиков холода» в последнем варианте рекомендуется выполнять укладку следующим образом. Первые два слоя минеральной ваты (каждый по 5 см толщиной) укладываются в ячейки обрешетки. А финальный делается так, чтобы сверху перекрыть направляющие каркаса.
  • Каркасные дома с наружной стороны имеют обязательный слой пароизоляции, поэтому перед тем, как укладывать каменную вату, можно его не дублировать. А вот после того, как все слои утеплителя заняли свои места, нужно сверху создать защитный слой от влаги и конденсата. Единым куском материала обойтись не получится. Поэтому стыки пароизоляционной пленки аккуратно и тщательно проклеиваются строительным скотчем.
  • Для утепления пола в каркасном доме также используется минеральная вата. Но ее слой должен составлять не менее 20 см. Работы выполняются аналогично, как и при теплоизоляции стен.

Схема утепления каркасного дома

Утепление каркасного дома видео

Эковата – альтернативный способ утепления каркасного дома

Этот материал относится к категории доступных утеплителей.

  • Это возможно благодаря тому, что производится он из двух основных недорогих компонентов: отходов производства картона, бумаги и макулатуры.
  • Обе составляющих образуют 80% всего материала, чуть больше 10% приходится на антисептик, чтобы предотвратить развитие микроорганизмов.
  • Остаток в этом процентном соотношении составляет на добавка, цель которой – минимизировать показатель горючести утеплителя.

Минусы материала

  • Области применения эковаты включают в себя и мелкое  строительство, но не всегда владельцы частных домов делают выбор в ее пользу. Это объясняется рядом особенностей материала, которые для некоторых мастеров являются существенными недостатками.
  • Хорошие показатели теплоизоляции, которые приписываются эковате, со временем снижаются за счет того, что под воздействием естественных процессов, утеплитель спрессовывается и уменьшается его объем. Потери могут доходить до 1/5 от общей массы. Во избежание таких неприятностей материал закладывается с аналогичным запасом. Избыток в 25% послужит гарантией сохранения теплопроводности материала на одном и том же уровне на весь период эксплуатации.
  • Как и все, что имеет основой бумагу, эковата способна впитывать значительное количество жидкости. Показатель по этому параметру колеблется в промежутке от 9 до 15%. И с каждым из них свойства материала удерживать тепло теряются. Поэтому крайне важно организовать утепляемое пространство таким образом, чтобы оно проветривалось, и имелась возможность вывода влаги.
  • Равномерный объем закачки утеплителя способно обеспечить только специальное оборудование. Считается, что профессиональная техника дает возможность контролировать плотность «набивки», чтобы минимизировать усадку. Следовательно, придется либо нанимать профессионалов, либо набираться опыта самостоятельно, рискуя получить уровень теплоизоляции по качеству ниже ожидаемого.

  • Можно применять «сухой» способ заполнения пустот. Его отрицательный момент – образование мелкой пыли, попадания которой на слизистые и в органы дыхания лучше избегать. «Влажный» метод нанесения требует просушки слоя утеплителя два-три дня. В зависимости от погоды, длительность ожидания может увеличиваться. В условиях ограниченного времени на возведение дома это считается большим минусом. Хотя из двух способов именно метод мокрого нанесения позволяет достичь лучших результатов.
  • Жесткость эковаты не позволяет использовать ее без сооружения каркаса, когда речь идет об утеплении горизонтальных поверхностей.
  • Несмотря на добавки, которые делают материал менее горючим, полной защиты от огня достичь невозможно. Поэтому использование эковаты не рекомендовано возле каминных труб, дымоходов и тем более рядом с источниками открытого пламени. Чтобы исключить возможность тления утеплителя, между ним и источником тепла сооружают защитный барьер. В качестве него применяются каменная вата с фольгированным покрытием или плиты асбестоцемента.
  • Особое внимание к соблюдению норм по заполнению эковатой требуется в момент утепления стен или наклонных конструкций. Игнорирование рекомендации расхода материала из расчета 65 кг на 1 м² приведет к скорой усадке и образованию участков, оставшихся без утепления.

Достоинства эковаты как теплосберегающего материала

Может показаться, что при таком обширном списке недочетов использование эковаты нецелесообразно. Это не так. При соблюдении технологии плюсы материала становятся еще более очевидными.

  • Начать нужно с того, что самого материала потребуется не так уж и много. Указанная выше норма в 65 кг на м² требуется не всегда, а минимально эковата расходуется от 28 кг на м³.
  • Утеплитель обеспечивает достойный уровень шумоизоляции. Слой в полтора сантиметра не пропускает звук до 9 дБ громкости.
  • Экологичность данного материала не нуждается в подтверждениях, если вспомнить, что является его основой. Собственно, об этом говорит и название. По «вине» эковаты в процессе эксплуатации не возникает аллергии у жильцов дома.

  • Единственное, на что следует обратить внимание, изучая состав, указанный производителем – какое вещество использовалось в качестве антигорючей добавки. Антипиреном лучшего качества считается бура (иногда называется боракс). Сульфаты аммония и борная кислота могут быть виновниками неприятного стойкого запаха, да и длительной защиты от огня не обеспечивают.
  • Благодаря бесшовной укладке материал заполняет пространство не оставляя пустот, следовательно, незащищенных участков не остается.

  • Доступная цена на утеплитель вкупе с хорошими эксплуатационными характеристиками часто играет решающую роль при выборе материала.

Технология утепления каркасного дома эковатой

Как упоминалось, основных путей для утепления этим материалом два: «сухой» и «влажный». Второй вариант может выполняться на водной основе или с применением клеевого состава. Но какого бы прекрасного результата он не давал, наиболее простым и популярным считается метод засыпки сухого утеплителя. Итак, чтобы выполнить работу  вручную, потребуется выполнить следующие манипуляции.

  • Полы утеплять немного легче. Закупленный материал надо разрыхлить специальным аппаратом, после чего прессованный брикет, весящий 15 кг, увеличится в объеме в три раза.

  • Подготовленную таким образом эковату засыпают между лагами. Делать это надо постепенно, разравнивая слои. В конце материал должен образовывать небольшую горку. Для чего нужен этот излишек уже упоминалось. Он утрамбуется под весом досок.
  • Чтобы провести работу на стенах, к стойкам направляющих крепится слой пароизоляционного материала или сразу производится обшивка листами гипсокартона или ОСП. Делается это не до конца, а оставляется зазор, через который  и засыпается эковата. Она постепенно будет заполнять пространство, уплотняясь под собственным весом. А вот на завершающем этапе ее придется утрамбовывать.
  • Все действия производятся с использованием защитных средств (очки и маска-фильтр), а процесс заполнения может быть оптимизирован, если применять для этого установку, которая выдувает материал, одновременно его разрыхляя. Некоторые строительные компании предоставляют возможность брать такое оборудование в аренду.
Пенопласт и пенополистирол для утепление стен каркасного дома. Что выбирать

Оба этих материала имеют практику применения в каркасных домах. Утепляют  ими фасады с наружной и внутренней стороны здания. При некоторой схожести, пенопласт проигрывает своему оппоненту по большинству показателей, но за счет неплохой теплоизоляционной характеристики и дешевизны, он пользуется спросом. Среди очевидных недостатков можно отметить:

  • не очень качественную звукоизоляцию,
  • выделение вредных веществ при горении
  • и очевидный интерес к нему со стороны грызунов.

Утепление каркасного дома пенопластом снаружи

  • Поверхность придется подготовить вместе со всеми несущими конструкциями. Для этого обязательно удаляются гвозди, остатки прочих материалов, трещины заделываются. Ровная поверхность позволит исключить воздушные зазоры между стеной и пенопластом. После выравнивания поверхности ее обрабатывают грунтовкой, предназначенной для работ снаружи. Расход состава ведется от 150 мл на м².

  • Поле того как просохнет грунтовка, сооружается система вертикальных подвесов с шагом в 60 (70) см. Благодаря этому удастся не допустить перекосов при креплении плит материала. Пенопласт сажается на клей, который наносят по пяти точкам в виде небольших кучек, а по периметру плиты полностью проводится клеевая полоса. Полотно с клеем плотно и с усилием прижимается к основанию. Последующие ряды укладываются на манер кирпичной кладки, то есть вразбежку. Порцию разведенного состава нужно успеть израсходовать в течение часа.
  • Ели в результате укладки образуются нестыковки между листами материала или получаются неровности, то все такие дефекты устраняют с помощью острого и нагретого ножа. Образующиеся щели можно заделать:
    1. смесью раскрошенного пенопласта и клея,
    2. пеноизолом (жидкий аналог материала),
    3. монтажной пеной.
  • Пластиковые дюбеля создают дополнительное крепление для утеплителя. Они потребуются в количестве не меньше пяти штук на одну пластину. Далее следует закрепление всей конструкции стекловолокном для особой прочности, а специальные профили для углов создадут надежные ребра жесткости. Шпаклевку лучше наносить в два слоя, а финальной отделкой может стать, например, фасадная краска.

Утепление каркасного дома пенопластом изнутри

Технология выполнения работ внутри помещений схожа. Этап подготовки поверхности отличается только применением грунтовочных материалов для внутренних работ.

  • В качестве клеевого состава можно использовать привычный плиточный клей для керамической плитки. Применение дюбелей также желательно.
  • Что касается размеров ячеек на армирующей сетке, то они могут быть от 3 до 6 мм. Крепить ее надо образуя нахлест и плотно прижимая к пенопласту.
  • Часто в качестве завершающего слоя используют гипсокартон. Нельзя забывать и об обязательной герметизации швов.

Утепление каркасного дома пеноплексом

  • Пенополистирол в монтаже отличается от пенопласта повышенными требованиями к созданию защиты от влаги и солнечных лучей. Технология крепления на стену принципиальных отличий не имеет.
  • Что конкретно предпочесть, придется решать самостоятельно. Оба материала действительно отличаются, в том числе и по цене. Последний стоит дороже, зато он более прочный и плотный.
Утепление каркасного дома стекловатой своими руками

Стекловату некоторые не принимают во внимание, считая ее материалом прошлого поколения, а зря.

  • Современные представители утеплителей этой категории отличаются от предшественников улучшенными характеристиками. К тому же она стоит меньше своих «собратьев», а тепло способна удерживать достаточно хорошо.
  • Принцип ее монтажа такой же, как и у каменной ваты. То есть для того, чтобы утеплить, например, полы, материал раскраивают из рулона таким образом, чтобы он был на пару сантиметров шире, чем расстояние между лагами.

  • Перед укладкой создают гидроизоляционную прослойку. Это может быть и толь и полиэтилен.

Чем в итоге будет утеплен каркасный дом – не так уж и важно, главное исходить из собственных сил и возможностей и во всем соблюдать технологию.

Блог | Дом ТехноНИКОЛЬ

В этой статье мы разберемся, за счет каких технологий и материалов каркасные DOM TECHNONICOL получаются теплыми и энергоэффективными.

Теоретические основы утепления каркасного дома

При расчете минимально допустимого слоя теплоизоляции в каркасном домостроительстве применяется термин «термическое сопротивление».

Термическое сопротивление, или сопротивление теплопередаче — физическая способность материалов тормозить рассеивание тепла за счет движения молекул.

Каждый материал, в том числе песок или воздух, обладают собственным термическим сопротивлением. Чтобы в процессе решения вопроса о том, как утеплить каркасный дом, получилась пригодная для комфортного проживания конструкция, суммарное сопротивление теплопередаче многослойной изоляции в ограждающих конструкциях дома — полу, кровле, стенах — должно превышать минимально допустимые значения.

Для конструкций деревянного дома, где в качестве утеплителя используется каменная вата, рекомендуемая толщина теплоизоляционного контура (для соответствия нормативам Средней России) составляет:

В проектах домов TECHNONICOL термическое сопротивление многослойной изоляции ограждающих конструкций с запасом перекрывает нормативные значения. В стенах толщина теплоизоляции составляет 250 мм, в скатах мансарды и перекрытиях первого этажа — 300 мм.

Теплоизоляционный контур

Утепление каркасного дома представляет собой монтаж теплоизоляционного контура во всех ограждающих конструкциях строения, соприкасающихся с окружающей средой: стенах, кровле, перекрытии первого этажа. Из-за своей многослойной структуры такой контур еще называют «теплоизоляционным пирогом».

В простейшем варианте «пирог» состоит из 3 элементов (снаружи вовнутрь):

  • ветровлагозащитная мембрана;

  • слой утеплителя;

  • пароизоляционная мембрана.

TECHNONICOL  в конструкции своих каркасных домов для утепления применяет более продвинутую и сложную структуру теплоизоляционного контура (снаружи вовнутрь):

  • внешний вентилируемый зазор под отделкой фасада;

  • ветровлагозащитная мембрана;

  • слой перекрестного утепления;

  • слой основного утепления;

  • пароизоляционная мембрана;

  • внутренний вентилируемый зазор под основанием чистовой отделки.

Утеплитель

Лучшим утеплителем деревянных каркасных домов считается каменная вата. Это связано с тем, что все несущие и силовые элементы каркасного дома — стойки, балки, стропила, ригели, укосины — выполнены из дерева и отличаются повышенной пожароопасностью, а каменная вата – негорючий материал, при нагревании не выдлеяет дыма и токсинов.

Помимо низкой теплопроводности и негорючести вата обладает рядом дополнительных полезных свойств. За счет волокнистой структуры она хорошо изолирует шумы и позволяет всей конструкции дышать. Для ее обработки и монтажа не требуются специальные приспособления — достаточно длинного острого ножа.

Конечно, каменная вата не идеальный материал, и у нее есть свои недостатки. Так, со временем вата накапливает внутри себя влагу, что приводит к снижению теплоизолирующих свойств. Но данный минус надежно нивелируется с помощью качественных пароизоляционных и влагозащитных мембран, не дающих влаге из внутренних помещений и окружающей среды проникнуть в утеплитель.

Утепление пола каркасного дома

В зависимости от типа фундамента — утепленная шведская плита или винтовые сваи — применяется разная технология утепления.

Утепленная шведская плита

В  случаях, когда  в качестве фундамента выступает УШП, для утепления каркасных домов используются 150-миллиметровая подушка из утрамбованного строительного песка мелкой фракции и 100-200 миллиметров экструдированного пенополистирола XPS CARBON ECO SP.

Контур из экструдированного пенополистирола полностью охватывает железобетонное основание плиты с внешней стороны и исключает возникновение мостиков холода.

В дополнение к пассивной теплоизоляции из песка и пенополистирола в толще бетона монтируется система теплого водяного пола, превращающего плиту в один большой радиатор отопления.

 

Структура теплоизоляционного контура

Песок 150 мм
Экструдированный пенополистирол TECHNONICOL Carbon XPS 100-200 мм
Свайно-винтовой фундамент

В случае использования свайно-винтового фундамента применяется технология перекрестного утепления каркасных домов. Между лагами перекрытия укладывается основной слой каменной ваты толщиной 200 мм. Затем поперек лаг монтируется обрешетка из бруса, в которую укладывается дополнительный слой ваты толщиной 100 мм.

В результате суммарная толщина утепления пола первого этажа каркасного дома составляет 300 мм. А перекрестный монтаж слоев утеплителя — отличная профилактика против появления мостиков холода.

 

Структура теплоизоляционного контура

Ветровлагозащитная мембрана Tyvek Housewrap TECHNONICOL 0,2 мм
Каменная вата Технолайт 300 мм
Пароизоляционная мембрана Оптима TECHNONICOL 0,3 мм

Утепление стен каркасного дома

Для стен каркасных DOM TECHNONICOL применяется перекрестное утепление с внешним и внутренним вентилируемыми зазорами. Во внутренний зазор удобно укладывать электропроводку и коммуникации.
Основной слой утепления — каменная вата толщиной 200 мм, уложенная между стоек. Дополнительный слой ваты в 50 мм укладывается между брусками контробрешетки.

Общая толщина теплоизоляционного «пирога» стен с учетом зазоров превышает 250 мм.

Структура теплоизоляционного контура

Внешний вентиляционный зазор 25 мм
Ветровлагозащитная мембрана Tyvek Housewrap TECHNONICOL 0,2 мм
Каменная вата Технолайт 250 мм
Пароизоляционная мембрана Оптима TECHNONICOL

0,3 мм

Внутренний вентиляционный зазор 25 мм

Утепление кровли каркасного дома

Для кровельных скатов мансарды используется прогрессивная схема утепления с терморазрывом. На стропильные ноги толщиной 200 мм с внешней стороны монтируется брус 50х50 мм из экструдированного пенополистирола TECHNONICOL CARBON, который полностью исключает утечку тепла из внутренних помещений через мостики холода.

В дополнение к терморазрыву на стропила с внутренней стороны набивается контробрешетка из деревянного бруса толщиной 50 мм, в которую укладывается дополнительный слой каменной ваты.

Суммарная толщина контура утепления с учетом внутренних и внешних вент зазоров превышает 350 мм.

Структура теплоизоляционного контура

Внешний вентиляционный зазор 50 мм
Ветровлагозащитная мембрана Tyvek Housewrap TECHNONICOL 0,2 мм
Каменная вата Технолайт 300 мм
Пароизоляционная мембрана Оптима TECHNONICOL 0,3 мм
Внутренний вентиляционный зазор 25 мм

 


CE Center — Непрерывная изоляция в каркасных наружных стенах_OLD

Строительные нормы и стандарты и стандарты экологичного строительства продолжают поднимать планку энергоэффективности и высоких характеристик зданий. В зданиях с деревянным каркасом это достигается за счет как уровня изоляции, так и герметичности. Хотя это положительная тенденция, необходимо решить ряд серьезных проблем с дизайном стен. В частности, определение наилучшего количества и типа изоляции для использования может быть неясным, особенно в свете контроля водяного пара или влаги, которые могут задерживаться в построенных стеновых конструкциях.Это особенно верно в случае обеспечения непрерывной внешней изоляции как части каркасной внешней стены. Нормы и передовой опыт предлагают разное количество непрерывной изоляции для разных климатических зон. Также есть опасения, что непрерывная изоляция может повлиять на способность стены «дышать» и выделять любую захваченную влагу изнутри конструкции, поэтому в некоторых случаях это может повлиять на выбор внутреннего пароизолятора на теплой внутренней стороне. здания. Все эти переменные и параметры привели к некоторой значительной путанице в отношении наилучшего способа надлежащего решения как внешней теплоизоляции, требуемой кодексом, так и отвода пара в стеновых сборках. Этот курс поможет прояснить различия между различными нормативными требованиями к непрерывной изоляции в различных климатических зонах, а также принципы и варианты, связанные с правильным управлением влажностью.

Все изображения любезно предоставлены Huber Engineered Woods LLC, за исключением указанного

Энергоэффективность наружных стен улучшена за счет использования сплошной внешней изоляции. Благодаря новой интегрированной обшивке этот слой встроен в заднюю часть обшивки, которая прилегает к каркасу.

Почему сплошная изоляция?

Каркасная конструкция стены, с использованием деревянных или металлических стоек, имеет недостаток с точки зрения тепловой эффективности. Проще говоря, каркас пропускает больше тепла, чем изоляция. Это вполне можно наблюдать и измерить с помощью стандартных методов, которые проверяют различные материалы на количество теплового потока или теплопередачи через них. Эти испытания основаны на фундаментальных законах физики и термодинамики, которые, среди прочего, указывают на то, что тепло всегда стремится к равновесию, перетекая от теплого источника в более прохладное место.

Теплообмен

Средства измерения теплопередачи в строительных изделиях основаны на U-факторах, которые показывают, сколько британских тепловых единиц (БТЕ) ​​энергии проходит через материал определенного размера (например, один квадратный фут) за время (в частности, за один час). на каждый градус Фаренгейта в разнице температур. (Чем больше разница в температуре между двумя сторонами материала, тем быстрее или интенсивнее течет тепло.) Чтобы определить, сколько тепла передается через какой-либо конкретный материал, его коэффициент U определяется путем тестирования этого материала на на квадратный фут с течением времени, измеряя разницу температур между двумя сторонами.Результирующее число, как правило, является десятичным (например, 0,5), причем меньшие числа указывают на небольшую теплопередачу (например, изоляция), а более высокие числа указывают на большую теплопередачу (например, проводящий металл). Применительно к зданию используется основная формула (U x A) x dT, где U = проверенный коэффициент U для одного квадратного фута материала, A = площадь в квадратных футах, установленная в строительной сборке, а dT — это расчетная или фактическая разница температур в помещении и на улице. Все расчеты тепловой энергии в ограждающих конструкциях зданий (т.е., стены, крыши и т. д.) основаны на этой фундаментальной формуле.

Стоит отметить, что в то время как ученые и инженеры любят работать и мыслить дробными U-факторами, большая часть населения предпочитает целые числа, что сделало R-значения популярным средством для обсуждения тепловых свойств материалов. Это по-прежнему вполне законно, поскольку процесс тестирования и расчета абсолютно одинаковый. Разница в том, что вместо того, чтобы отображать результаты как теплопередачу через материал, они сообщаются как тепловое сопротивление — прямая обратная величине тепловому потоку.Поскольку U-факторы и R-значения являются мультипликативно инверсными друг другу, для преобразования U-факторов в R-значения и наоборот, вы делите единицу на число, которое вы пытаетесь преобразовать. Таким образом, изоляционный материал с U-фактором теплового потока 0,05 легко делится на 1 (1 / 0,05), чтобы указать R-значение сопротивления R-20. Точно так же изоляционный продукт с R-значением R-20 преобразуется в U-фактор как 1 / 20 = 0,05. Следовательно, стало обычным делом продвигать и продавать отдельные материалы и продукты на основе их значений R.Также несколько проще думать о более высоких значениях R, равных большему сопротивлению тепловому потоку, что, по сути, приводит к лучшим энергетическим характеристикам ограждающих конструкций здания. С точки зрения вычислений, R-значения нескольких материалов можно сложить вместе, чтобы определить общее R-значение, но U-факторы не могут быть объединены вместе.

Тепловой мост

Как хорошо известно большинству профессионалов в области проектирования, строительные конструкции очень редко бывают монолитными. Скорее, они требуют различных материалов, из которых складывается общая конструкция.В каркасных наружных стенах элементы каркаса расположены на расстоянии 16 или 24 дюймов по центру с верхними и нижними пластинами, не говоря уже о дополнительном обрамлении вокруг дверных или оконных проемов. Этот каркас определяет основную толщину стены, а пространства между или вокруг каркаса обычно заполняются изоляцией. Затем сплошные слои внутренней и внешней обшивки, такой как гипсокартон или изделия из деревянных панелей, покрывают обрамленные и изолированные области, создавая стену, готовую к отделке.Чтобы точно определить истинные тепловые характеристики этой обычно построенной стены, необходимы как минимум два расчета: один основан на разрезании поперечного сечения через каркас, а другой — на основе поперечного сечения через изоляцию. Затем полученные числа необходимо применить к соответствующему проценту от общей площади стены, чтобы получить средневзвешенное значение UA для всей стены.

В типичных ситуациях каркас может составлять от 20 до 30 процентов площади любой данной внешней стены, при этом только около 70-80 процентов площади стены фактически содержат изоляцию.Поскольку каркасные секции не будут иметь такой же коэффициент теплопроводности / коэффициент сопротивления изоляции, как теплоизоляция, тепловая эффективность стены напрямую снижается. Легко спросить, действительно ли эта площадь кадрирования от 20 до 30 процентов имеет большое значение? Оказывается, да. Любой строительный материал, включая каркас или обшивку, способный передавать тепло больше, чем изоляция, будет подчиняться законам физики и делать это. В этом случае каждая стойка или другой прочный элемент конструкции, например балки перекрытия, колонны и т. Д., действует как брешь в изолированной стене, позволяя теплу проходить через нее. Это прочное соединение между теплой стороной и холодной стороной сборки действует как «тепловой мост», позволяя теплу свободно течь между секциями, где присутствует изоляция.

Чтобы проиллюстрировать это, давайте посмотрим на пример 1 с коэффициентом U, показывающий каркас деревянных стоек размером 2 на 6 с шагом 16 дюймов в центре с изоляцией R-20 между стойками. Мы обозначили сечение шпилек как A1, а сечение изоляции как A2.Вводя проверенные и известные значения R (из независимых источников) различных материалов, мы обнаруживаем, что общее значение R через шпильки составляет только R-7,95 (U-0,126) по сравнению с R-21,07 (U-0,048). через изолированные участки. Предполагая, что 22 процента обрамления и 78 процентов изолирующих областей, средневзвешенное значение для всей стены дает общее эффективное R-значение R-15,34 (U-0,065). Это снижение общих тепловых характеристик более чем на 27 процентов из-за теплового моста шпилек, что довольно значительно.

При расчете тепловых характеристик каркасных стен с изоляцией только полости необходимо учитывать теплопередачу через стойки, а также через изоляцию.

Показатели теплоизоляции стеновых панелей из бамбука и дерева в зданиях с легким каркасом

Abstract

В зданиях с легким каркасом обычно используются стены с поперечным срезом, выполненные путем обрамления и обшивки панелей из древесных материалов. В последнее время большое количество исследований было сосредоточено на использовании искусственных композитов из бамбука для замены дерева в зданиях с легким каркасом.Целью данного исследования является изучение теплоизоляционных характеристик стеновых панелей из бамбука и дерева в зданиях с легким каркасом. Во-первых, была определена архетипная стена с характеристиками, аналогичными тем, которые обычно используются в стенах, отделанных деревом. Начиная с архетипа стены, для тестирования были определены четыре специфические конфигурации, представляющие одну классическую конфигурацию на основе древесины, одну гибридную конфигурацию на основе бамбука и дерева и две конфигурации на основе бамбука с различной толщиной шипов.

Теплопроводность материалов, из которых состоит стена, измерялась с помощью прибора с горячей плитой, меняющего температуру в диапазоне 10–50 ° C. Анизотропия теплопроводности была проанализирована для древесины и бамбука. Четыре конкретных конфигурации архетипа стены были протестированы в защищенном горячем боксе, чтобы определить термическое сопротивление и коэффициент пропускания. Экспериментальные результаты сравнивались с оценками, полученными с использованием процедуры ISO 6946 и модели стены с конечными элементами (FE), в обоих случаях использовалась ранее измеренная теплопроводность. Было обнаружено хорошее согласие между экспериментами и моделями с лучшими результатами, полученными с помощью модели FE. Наконец, проверенная таким образом модель FE была использована для оптимизации архетипа стены с использованием только материалов на основе бамбука для китайских термальных регионов, что показало возможность реального применения в практике.

Все результаты показывают, что теплоизоляционные характеристики инженерных бамбуковых композитов несколько ниже, чем у деревянных, как на уровне материала, так и на уровне стенок, подверженных сдвигу.Это указывает на возможность использования стеновых панелей на основе бамбука в зданиях с легким каркасом, обеспечивающих теплоизоляционные характеристики, аналогичные классическим деревянным.

Ключевые слова

Стены со сдвигом

Бамбук

Дерево

Теплоизоляция

Энергетика зданий

Строительные ограждающие конструкции

Здания с легким каркасом

Рекомендуемые статьи Цитирующие статьи (0)

Просмотреть полный текст

© 2018 Все права зарезервированный.

Рекомендуемые статьи

Цитирующие статьи

Характеристики теплоизоляции и тепловые мосты

Энрико де Ангелис и Эрманно Серра / Энергетические процедуры 45 (2014) 362 — 371

363

сокращение (и возможность вторичного использования) отходов на этапе строительства и снижение нагрузок (и, как следствие,

затрат) на несущие конструкции.

Эти стены сделаны из гипсовых или цементно-гипсокартонных листов, закрепленных на C- или U-образных стальных каркасных профилях толщиной 6/10

м

м и потенциально могут содержать теплоизоляционные материалы большой толщины.Таким образом, теплопроводность материалов

в стенах из легкого стального каркаса более неоднородна, чем в традиционной стене, состоящей из блоков

и строительных растворов. Фактически теплопроводность изоляционных слоев составляет около 0,04 Вт / (мК), тогда как для стальных каркасов

примерно в 1000-1500 раз выше (50 Вт / (мК)). На самом деле металлические шпильки являются важными мостами холода.

Эта тема уже рассматривалась за границей американскими [3] и британскими стандартами, такими как BRE Digest 465 [4], а также

по

ассоциациями производителей световых стен как [5], оценивая также акустические характеристики и характеристики пожарной безопасности.Первые

на

e предложили метод зон для стенок металлических стоек с изолированными полостями, чтобы учесть тепловые аномалии

вокруг металлических стоек (в зависимости от глубины стоек, на соотношении между тепловым сопротивлением материала оболочки

и

d изоляции полости и толщины оболочек) через эквивалентную электрическую схему.

на

баллов этого метода было проверено более чем на 200 смоделированных случаях металлических каркасных стен с изолированными полостями.

Для всех рассмотренных конфигураций расхождение результатов было в пределах ± 2%.

В Италии конструкции легких стальных каркасов практически не применяются, поскольку традиционные каменные или железобетонные конструкции

все еще остаются в ноу-хау строительных компаний. Как следствие, большая часть легких зданий состоит из

несущих бетонных конструкций и

ненесущих стен из легкого стального каркаса. Таким образом, субъекты строительной индустрии

(производители, строители, проектировщики) часто не имеют надлежащих знаний об этих системах (в частности, по физическим вопросам строительства

), частично из-за отсутствия нормативных требований.Фактически не существует стандарта, который позволял бы оценивать тепловые характеристики

, в то время как единственный используемый в настоящее время стандарт предполагает реализацию на месте [6].

При сборе и анализе данных некоторых итальянских производителей было отмечено, что они часто не учитывают тепловое воздействие

металлического каркаса при расчете термического сопротивления стен в текущем сечении (между металлическими стойками).

Таким образом, это приводит к завышению теплового сопротивления до 200% в зависимости от деталей конструкции (номер, положение

, частота и организация металлических шпилек), как будет показано далее в параграфе 4.

Международный стандарт ISO 6946 [7] применяет упрощенный метод расчета теплового сопротивления стен

с неоднородными слоями, но явно не позволяет рассчитать тепловые характеристики стены с изоляционным слоем

, пересеченным металлом. шпильки, потому что соотношение между верхним и нижним пределами термического сопротивления

больше 1,5. Пределы определены следующим образом: минимальное термическое сопротивление R

мин

, когда слои подвергаются воздействию

одинаковой разницы температур (параллельные изотермические линии); максимальное термическое сопротивление R

max

, когда неоднородные слои

независимы, поскольку они будут разделены адиабатическими границами.Реальное тепловое сопротивление должно быть средним значением

, но это верно для небольших различий в теплопроводности материалов.

М. Горголевски (чья работа лежит в основе стандарта BRE Digest 465) в [4, 8] скорректировал ISO 6946

, предложив простые исправления в обычном методе расчета U-значения. Реальное тепловое сопротивление больше не является средним значением

между

мин.

и

макс.

, но было предложено взвешенное R’-значение (уравнение 1) как функция от p-фактора

, которое включает частота s и размеры w и d металлических шпилек (уравнение 2).Метод конечных элементов ISO

10211 [9] использовался для оценки реального теплового потока через стальные каркасные конструкции, и результаты сравнивались (нахождение

корреляций) с прогнозируемыми значениями, полученными с помощью упрощенного метода. Средняя ошибка была оценена ниже

3% для диапазона из 52 смоделированных случаев.



макс. Мин.

1RpR pR   

(1)

мин.

макс.

600

0.8 0,44 0,1 0,2 0,04

40100

R

wmmd

p

Rmmsmm

    

(2)

Было рассмотрено три различных типа конструкции стены с теплым каркасом: со всей изоляцией снаружи стальной рамы

, конструкция с холодной рамой с изоляцией только между стальными шпильками и гибридная конструкция.

Эта статья вначале расширит число случаев, проанализированных Горголевским, систематически рассчитывая тепловые характеристики стен

, составляя некоторые организованные формы с смоделированными значениями U для различных конфигураций стен

в качестве простого руководства для проектировщиков и находок. новые корреляции между смоделированными значениями и значениями в текущем разделе

для стен с двойным металлическим каркасом.

Усовершенствованная конструкция каркасной стены | Building Science Corp

В этом обзоре кратко описываются усовершенствованные конструкции каркасных стен 2×6, включая преимущества и недостатки этой стратегии строительства. Сложный двухмерный анализ теплового потока и одномерное гидротермальное моделирование использовались для определения рисков долговечности, связанных с влажностью, для анализа.

  • Облицовка
  • Полосы обшивки, создающие минимальный вентиляционный зазор 3/8 дюйма / дренажный зазор за облицовкой
  • Изолирующая оболочка XPS
  • Стена деревянного каркаса 2×6 24 дюйма o. c. с изоляцией полостей из стекловолокна или целлюлозы
  • Внутренняя гипсовая стеновая плита

Thermal Control

Установленная изоляция R-value : Имеется ряд установленных изоляционных R-значений в имеющихся в продаже стекловолоконных ватках для изоляции пространства стоек эта стенная система. Установленная изоляция R-value для стеклопластиковой ваты 2×6 находится в диапазоне от R-19 до R-21. Когда используется изоляция из дутой или распыленной целлюлозы, значение R обычно составляет R-20 для стен 2×6.

Наружную изоляционную оболочку обычно добавляют в виде пенополистирола (EPS) с R-4 / дюйм, экструдированного полистирола (XPS) с R-5 / дюйм или полиизоцианурата с фольгой с R-6,5 / дюйм.

Значение R для всей стены : Использование двухмерного анализа теплового потока с эффектами теплового моста и средними коэффициентами кадрирования (16%) показывает увеличение значения R для сборки и повышение эффективности стекловолокна в области шипов, уменьшив эффект теплового моста. Усовершенствованные каркасные стены с изоляционной оболочкой из XPS толщиной 1 дюйм и 4 дюйма имеют R-значения R-23 и R-38 для всей стены соответственно.

Контроль утечки воздуха: Стекловолокно, выдувная и распыленная целлюлоза — это воздухопроницаемые материалы, используемые в пространстве стоек стены, обеспечивающие возможные воздушные пути между внутренним и внешним пространством, а также конвективные петли в изоляции. Плотная целлюлоза имеет меньшую воздухопроницаемость, но не контролирует утечку воздуха. Изоляционная обшивка (пенополистирол, пенополистирол и пенополиизоцианурат с фольгированной облицовкой) воздухонепроницаема.Когда стыки между изоляционными панелями и изоляцией и каркасом должным образом герметизированы лентой, мастикой, герметиком и т. Д., Можно создать эффективную систему воздушного барьера на внешней обшивке.

Типичная изоляция : Стекловолокно, выдувная целлюлоза, распыленная целлюлоза и распыленное стекловолокно обычно используются для изоляции пространства стойки. Пенополистирол (EPS), экструдированный полистирол (XPS) и вспененный пенополиизоцианурат с фольгированным покрытием (PIR) используются в качестве внешней изоляционной оболочки.На балке обода используется аэрозольная пена для предотвращения утечек воздуха.

Долговечность

Защита от дождя: Утечка дождя в ограждение является основной причиной преждевременного выхода из строя ограждения здания. Контроль дождя обычно решается с помощью покрытого черепицей и / или ленты для контроля воды, такого как строительная бумага или синтетический WRB (т. Е. Оберточная бумага). Можно использовать изоляционную оболочку в качестве водоотталкивающего слоя, если все перекрестки, окна, двери и другие проходы водонепроницаемо соединены с поверхностью изоляционной оболочки, а швы изоляции заклеены или зашиты во избежание попадания воды. проникновение. 1

Контроль утечки воздуха: Конденсация утечки воздуха является второй по значимости причиной преждевременного разрушения ограждающих конструкций здания с этим типом конструкции стен. Очень важно контролировать утечку воздуха, чтобы свести к минимуму проблемы, связанные с долговечностью конденсации утечки воздуха. Использование изолирующей оболочки снижает риск конденсации утечки воздуха за счет повышения температуры плоскости конденсации, но конденсация все еще возможна с изоляционной оболочкой в ​​холодном климате.В этой стеновой системе требуется воздушный барьер, чтобы исключить (в идеале) или, по крайней мере, минимизировать утечку воздуха через стену. 2 Воздушный барьер должен быть жестким и достаточно прочным, чтобы противостоять силам ветра, непрерывным, прочным и воздухонепроницаемым. 3

Контроль паров: Стекловолокно или целлюлоза в полости стойки являются паропроницаемыми, тогда как EPS, XPS и PIR являются умеренно проницаемыми, умеренно непроницаемыми и полностью непроницаемыми соответственно.

Изоляционная оболочка снижает риск конденсации в зимнее время за счет повышения температуры плоскости конденсации и снижает риск попадания пара внутрь в летнее время за счет замедления движения пара в ограждение от облицовки хранилища, такой как кладка или штукатурка. Уровень пароизоляции стен определяется в IRC, и с ним следует консультироваться, поскольку установка неправильного пароизоляционного слоя или установка пароизоляционного слоя в неправильном месте может привести к повреждению ограждения здания. 4

Сушка: Изоляция из целлюлозы и стекловолокна позволяет относительно легко сушить, поэтому сушка контролируется другими более паронепроницаемыми компонентами корпуса, такими как пароизоляция и оболочка из OSB. Установка пароизоляции с обеих сторон будет изолировать любую влагу в пространстве стойки, что приведет к низкому потенциалу высыхания и, возможно, к рискам долговечности, связанным с влажностью. Вентиляция за паронепроницаемыми облицовками и элементами интерьера (например,грамм. кухонные шкафы) могут способствовать высыханию.

Встроенная влажность: Всегда следует проявлять осторожность, чтобы построить с сухими материалами, где это возможно, и позволять сушить влажные материалы перед закрытием. Целлюлозу часто распыляют во влажной среде, и производители рекомендуют сушить перед закрытием и влажностью ограничения содержания.

Краткое описание долговечности: Основные риски долговечности, связанные с этими стеновыми конструкциями, включают повреждение от влаги, связанное с проникновением дождевой воды.Конденсация (скорее всего, в результате утечки воздуха, но также потенциально в результате диффузии пара) уменьшается с помощью изоляционной оболочки, но все же может происходить, хотя изоляционная оболочка менее подвержена рискам, связанным с влагой, чем структурная оболочка OSB.

Строимость

Внешняя изоляция до 1 1 / 2 ”требует минимальных изменений в стандартной практике строительства корпуса. Наружная изоляция свыше 1 1 / 2 ”требует изменений в конструкции окон и стен, а также в деталях, что требует обучения и контроля на начальном этапе внедрения.

Облицовку можно легко прикрепить к шпилькам непосредственно через 1 дюйм изоляционной оболочки. Для более толстых уровней изоляции (> 2 дюймов) требуются обвязочные ленты или полосы для обшивки, прикрепленные к каркасу с помощью длинных застежек. Некоторые производители облицовки разрешают крепить облицовку непосредственно к обвязке.

Стоимость

Усовершенствованная конструкция каркасной стены снижает затраты, необходимые для создания каркаса. Стоимость изоляционной обшивки для замены большей части структурной деревянной обшивки немного увеличивается, но есть ощутимые рентабельности экономии энергии, а также улучшение комфорта, которое трудно измерить количественно.

Использование материалов

При правильном применении расширенного каркаса (одинарные верхние пластины, коллекторы правильного размера, два угла стойки и т. Д.) Лишний деревянный каркас из стандартной конструкции удаляется, и количество каркаса уменьшается. Использование изоляционной оболочки вместо структурной деревянной обшивки может потребовать использования структурных панелей или распорок в некоторых местах.

Краткое описание

Это стеновая система с высокой степенью теплоизоляции, которая будет работать в экстремальных климатических условиях как часть шкафа с высоким сопротивлением.


Ссылки
  1. Лстибурек, Дж. У. (2006). Руководство по управлению водными ресурсами . Вестфорд: Building Science Press Inc.
  2. Lstiburek, J. (2008, 08 20). BSD-104: Понимание воздушных барьеров .
  3. Straube, J. (2009, 04 22). BSD-014 Управление воздушным потоком в зданиях .
  4. Lstiburek, J. (2008, 10 17). BSD-106 Что такое пароизоляция .

Как уменьшить тепловые мосты в стенах | Home Guides

Сокращение тепловых мостов снижает затраты на электроэнергию за счет минимизации количества тепла, передаваемого через оболочку здания — пол, стены, крышу, двери и окна, разделяющие внутреннюю и внешнюю среду.Тепловой мост возникает в областях с плохой изоляцией, например, когда изоляция из стекловолокна между стойками стены сжата или влажна, или когда более теплопроводящие строительные материалы — дерево, бетон, стекло и металл — создают путь для распространения тепла. через стену.

Увеличенное расстояние между стойками

Известная профессионалами отрасли технология каркаса стен с использованием стоек 2 на 6 с увеличенным расстоянием между ними может обеспечить максимальное изоляционное покрытие и уменьшить тепловые мосты при сохранении структурной целостности.В большинстве юрисдикций кодекса вы можете размещать стойки 2 на 6 стен через каждые 24 дюйма вместо стандартного расстояния в 16 дюймов, используемого для стоек 2 на 4. Это уменьшает количество древесины в стене, обеспечивая большую изоляцию и меньшие общие потери тепла из здания. Использование передовых методов каркаса также позволяет сэкономить деньги и ресурсы за счет уменьшения количества пиломатериалов, необходимых для строительства домов.

Углы с двумя стойками

Традиционно для каркасных стен используются три стойки на внешнем углу, где встречаются две стены, тогда как передовые методы создания каркаса включают углы с двумя стойками для уменьшения тепловых мостиков. По данным Building Science Corporation, изоляция работает как минимум в три раза лучше, чем древесина, поэтому использование меньшего количества древесины в углу позволяет избежать ненужных холодных пятен на стенах. Третья стойка на внешних углах часто нужна только для поддержки гипсокартона, но вы можете прикрепить гипсокартон к углам с двумя стойками, сначала установив зажимы для гипсокартона — небольшие металлические или пластиковые язычки, которые прикрепляются к стойке, чтобы поддерживать гипсокартон в углу.

Одинарные верхние панели

Используйте линейное обрамление, чтобы еще больше уменьшить количество используемой древесины и оставить больше места для изоляции в стене.Выровняйте несущие элементы пола, стен и каркаса крыши по вертикали через здание так, чтобы каждый элемент находился непосредственно друг над другом. Это позволяет использовать одинарную верхнюю пластину — горизонтальный элемент каркаса, который проходит вдоль верхней части стеновых стоек — вместо двойной верхней площадки, состоящей из двух горизонтальных элементов каркаса, зажатых вместе. Двойная верхняя плита необходима только тогда, когда верхняя плита должна выдерживать вес расположенных выше стропил или балок, которые не находятся непосредственно над стеновыми стойками.Для длинных или пересекающихся стен соедините концы двух верхних пластин вместе с помощью металлических соединительных пластин, которые представляют собой специальные крепежные детали из листового металла со встроенными металлическими «зубцами», которые прикрепляются к дереву.

Непрерывная изоляция

Сплошной слой изоляции вокруг здания снаружи и непосредственно под сайдингом уменьшает тепловые мосты через деревянную конструкцию. Используйте изоляцию из жесткого пенопласта толщиной 1/2 дюйма или толще и плотно соедините изоляционные панели встык или используйте плиты со скошенными краями или краями с пазом и пазами, чтобы не было зазоров между панелями.Закройте все швы и отверстия в сайдинге герметиком или красной обмоточной лентой, также известной как лента для обертывания дома. Обрежьте изоляцию, чтобы она плотно прилегала к дверям, окнам и другим отверстиям. Наружная жесткая изоляция может даже заменить фанерную обшивку, если объединить ее с металлическими лентами, также известными как структурная стяжка, для стабилизации конструкции.

Ссылки

Ресурсы

Биография писателя

Энн Солтер начала профессионально писать в 2010 году и много работала в области искусства, архитектуры и дизайна с 2004 года.Ее работы были опубликованы в информационных руководствах по студенческим жилищным кооперативам и альтернативным вариантам устойчивого строительства. Другие области специализации включают технологии, здоровье, садоводство и кулинарию. Солтер имеет степень бакалавра архитектурных исследований Университета Ватерлоо.

Знаете ли вы ценность вашей стены?

Стены дома обычно представляют собой самые большие потери энергии по сравнению с любой изолированной конструкцией и, следовательно, предлагают самые большие возможности для получения прибыли. Поскольку стены представляют собой самую большую площадь поверхности, они чаще всего представляют собой самую тонкую изолированную конструкцию, в дополнение к тому, что в них есть окна и двери. Поскольку мы вряд ли резко изменим процентное соотношение площади поверхности между стенами, полом и потолком, вместо этого нам следует сосредоточить нашу энергию на том, что мы можем изменить: толщину стен и характеристики окон и дверей.

Во многих частях США стандартная каркасная стена включает обрамление 2×6 с двойными верхними пластинами, стойки 16 дюймов по центру, со стекловолоконными войлоками R-21, установленными в полости глубиной 5,5 дюймов. Промежуточное обрамление предполагает наличие пространства для изоляции в оконных коллекторах, 2 или 3 углах стойки и обрамление лестниц на пересечениях внутренних и внешних стен для устранения неизолированных холодных мест, где изоляция будет обременительной для установки.Эта сборка представляет собой 18% «фактор обрамления» (процент стеновой сборки, состоящей из элементов каркаса вместо изоляции), в результате чего 82% стены остается заполненной изоляцией. Поскольку элементы деревянного каркаса имеют тепловое сопротивление (R-значение), примерно равное только четверти R-значения типичных изоляционных материалов, общее R-значение стены рассчитывается как 18,2. Строители, которые выбирают более качественную установку стекловолоконной изоляции за счет выдувания, могут использовать изоляцию полости R-23, но с учетом фактора обрамления 18% общее значение R стены рассчитывается как 19.6.

Adobe Stock

Отключение теплового моста
Кондуктивная потеря энергии через деревянный каркас обычно называется тепловым мостом. Деревянный каркас действует как проводник, по которому тепловая энергия свободно перемещается изнутри наружу в отопительный сезон и снаружи внутрь в сезон охлаждения. Это можно увидеть с помощью инфракрасных камер или невооруженным глазом холодным утром, когда сухие линии шпилек видны через каждые 16 дюймов между росой на покрытых инеем наружных обшивках.Чтобы сэкономить деньги на расходах на пиломатериалы и увеличить процент изоляции стен по сравнению с деревянным каркасом, некоторые строители внедрили передовые методы каркаса, которые увеличивают расстояние между стойками с 16 до 24 дюймов. и обычно требует одинарных верхних пластин. (Однако при использовании этой техники стропила или фермы должны идеально сидеть на каждой стойке стены, поэтому довольно редко строить с одинарными верхними пластинами в 24-дюймовом каркасе).

Усовершенствованные методы обрамления увеличивают общую R-ценность стен примерно на 5%.Следовательно, узлы с более толстыми стенками, которые уменьшают тепловые мосты, являются ответом на получение превосходных характеристик. Стены с двойными стойками или ступенчатыми каркасами с двумя каркасными стенами 2х4, разнесенными на дюйм или более, обеспечивают дополнительную изоляцию с очень небольшим тепловым мостиком изнутри наружу.

Все более распространенным подходом является обрамление внешних стен стандартным обрамлением 2×6 с последующим добавлением 1 дюйма или более внешней изоляции снаружи стены (см. Изображения ниже). Чаще всего это изоляция из жесткого пенопласта с внешней стороны оболочки.В качестве альтернативы, изоляция из жесткого пенопласта может быть помещена между стойками стены и обшивкой (с увеличенным графиком крепления гвоздями). Строителям, заинтересованным в применении этого подхода, могут помочь готовые изделия, устраняющие несколько этапов. Для строителей, обеспокоенных проницаемостью стен или негативным воздействием на окружающую среду многих пенопластов, панели из минеральной ваты представляют собой еще один вариант непрерывной внешней изоляции для устранения тепловых мостиков.

Фото любезно предоставлено Терри Нордбай. Фото любезно предоставлено Ox Engineered Products

Существует множество подходов к созданию более толстой стенки, которая устраняет тепловые мосты, и каждый из них дает несколько разные результаты, когда дело доходит до общего R-значения каждой сборки.В целях иллюстрации давайте сравним общее значение R 19,6 для промежуточной каркасной стены 2×6 с выдувной стекловолоконной изоляцией с той же стеной с одним дюймом полиизоциануратной (полиизо) пены с R-значением 6, нанесенным непрерывно. к экстерьеру. Этот подход обеспечивает общее значение R стены 27.

Тепловое воздействие окон
Целое значение R 27 звучит великолепно, но теперь давайте рассмотрим влияние на общее значение R стены при добавлении окон.Тепловое сопротивление окон оценивается в U-факторе. Умеренно эффективные двойные стеклопакеты с коэффициентом U 0,30 приравниваются только к R-3,3; эффективные двухкамерные окна с коэффициентом U 0,25 приравниваются к R-4; и очень эффективные тройные стеклопакеты с U-фактором 0,20 приравниваются к R-5. (Примечание: более высокие числа лучше для R-значения; меньшие числа лучше для U-фактора). Если мы включим 18% отношение окна к стене в наше значение R для всей стены, то оконная стена с коэффициентом U 0,30 снизит значение R для всей стены с 27 до 11.9. Более эффективное окно с коэффициентом U, равным 0,25, увеличивает значение R для всей стены до 13,3, а очень эффективное окно с тройным стеклом с коэффициентом U, равным 0,20, увеличивает значение R для всей стены до 15,1. Если мы установим эти же три пакета окон на выдувную стену 2×6 без внешней изоляции, мы обнаружим, что значение R для всей стены колеблется от 10,4 до 11,5 и 12,9 соответственно.

Этот отрезвляющий эффект уменьшенного значения R для всей стены становится еще более очевидным, когда неизолированные двери из массива дерева встроены во внешние стены любого дома.Всегда рассматривайте возможность установки наружных дверей из стекловолокна или стали с изоляцией из пенопласта, которые обеспечивают общий коэффициент сопротивления двери от 5 до 7 по сравнению с типичной дверью из цельного дерева с коэффициентом сопротивления менее 2 (значительно ниже, чем у большинства новых двойных окон).

Итог: Значения R для всей стены часто значительно меньше, чем можно было бы предположить. Уменьшение теплового моста с помощью усовершенствованных сборок стен может помочь решить эту проблему. Окна и двери оказывают наибольшее негативное влияние на значение R для всей стены, поэтому всегда следует выбирать окна и двери с высокими эксплуатационными характеристиками. Хорошей стратегией проектирования для проекта с ограниченным бюджетом было бы исключить как можно больше окон и дверей.

Почему важна сплошная изоляция — шпильки и соединители каркаса из легкой стали

Введение в сплошную изоляцию

Непрерывная изоляция — это концепция использования специализированных продуктов для улучшения теплоизоляции зданий, что помогает им соответствовать энергетическим нормам. Стандарты существуют как для жилых, так и для коммерческих зданий, и казалось бы несложным просто закрыть все щели достаточной изоляцией.Действительно, это требование, которое большинство строителей сочли бы здравым смыслом. Однако есть еще несколько факторов, которые следует учитывать, чем просто очевидные опасения по поводу того, сколько места нужно покрыть. Цель этого сообщения в блоге — дать краткое объяснение непрерывной изоляции для тех, кто не знаком с этой концепцией, а также предоставить новые технические подробности для опытных строителей. Для получения более подробной информации обратитесь к официальному документу TSN по энергетическим кодам и CI.

Важность сплошной изоляции

CI — это требование, выдвинутое властями, которые определяют хорошо изолированную структуру.Однако эффективная изоляция — это больше, чем просто требование, так как герметично закрытая ограждающая конструкция здания имеет множество преимуществ:

  • Снижает тепловые потери, вызванные тепловым мостом, тем самым повышая энергоэффективность здания. Зимой в помещениях становится теплее, а летом — прохладнее.
  • Защищает от проникновения воды и эрозии опорных конструкций, продлевая срок службы здания.
  • Продлевает срок службы стальных деталей за счет уменьшения перепада температур в полостях шпилек.

По сути, CI улучшает дизайн здания за счет увеличения долговечности конструкции и повышения ее энергоэффективности. Вместе это приводит к экономии денег, особенно в долгосрочной перспективе. Кроме того, пористая изоляция и плесень представляют серьезную опасность для здоровья, которую можно значительно снизить с помощью КИ. Это может не только служить аргументом в пользу привлечения внимания покупателей, заботящихся об энергии или деньгах, но и совершенно необходимо для подрядчиков, стремящихся избежать потенциальной ответственности в будущем.

Интуитивно понятно, что степень теплоизоляции здания во многом определяется климатом, в котором ведется строительство. Чем мягче климат, тем меньше изоляционного покрытия считается необходимым.

Достижение сплошной изоляции

Проще говоря, цель непрерывной изоляции — предотвратить попадание или утечку тепловой энергии из здания. Предметы или поверхности между изоляционными материалами с более высокой теплопроводностью, чем соседние поверхности, известны как тепловые мостики.Эти мосты создают путь наименьшего сопротивления теплопередаче, снижая общее тепловое сопротивление здания. В идеале тепловые мосты должны быть идентифицированы и устранены в первоначальной конструкции здания для поддержания CI, но часто это не так, и необходимо принять меры для их устранения. Объекты, о которых известно, что они создают тепловые мосты, такие как стойки из стали и дерева, следует осматривать визуально. После выявления тепловых мостов строители могут применить одну или несколько мер для их устранения:

  • Специальные крепежные детали, шайбы и анкерные системы из непроводящих материалов могут использоваться для закрепления изоляции и снижения теплопроводности.Эти компоненты прикрепляются к жесткой изоляции, чтобы укрепить «воздушный барьер», уменьшая утечки в оболочке здания.
  • Водонепроницаемые барьеры или WRB устанавливаются между стойками и сайдингом, чтобы предотвратить повреждение от влаги. Одним из таких примеров является гидроизоляция, материал, который устанавливается на определенные объекты, такие как дымоходы, вентиляционные отверстия и окна, которые чувствительны к проникновению воды.
  • Клеи, такие как ленты, герметики, покрытия и полиуретановая пена, бывают разных форм гибкого материала, которые могут быть с точностью развернуты в помещениях с повышенным риском. Эти материалы могут образовывать водонепроницаемые и воздухонепроницаемые уплотнения в более тесных помещениях, где волокнистая изоляция невозможна.
  • Картонные материалы обычно представляют собой форму затвердевшего пенопласта, который крепится за пределами каркаса здания, добавляя дополнительный слой и заполняя любые зазоры, оставленные изоляционными материалами, установленными между стойками.

В дополнение к различным системам крепления, представленным здесь, существует множество возможностей для инженерных подходов и адаптации существующих систем.Одной из таких систем является непрерывный жесткий изоляционный каркас ThermaFast® компании Steel Network (TSN). Как предварительно спроектированная система, она предназначена для выдерживания нагрузок, необходимых для многих типов облицовки, таких как кирпич, камень и любые более легкие типы облицовки. Глубина каркаса варьируется от 1 до 4 дюймов, чтобы удовлетворить различные потребности здания в теплоизоляции. На компонентах направляющих ThermaFast имеется непрерывная полоса термоленты толщиной 1 дюйм, которая снижает теплопроводность соединения, тем самым сводя к минимуму его функцию теплового моста.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *