Содержание

Расчет вентиляции

Мощность калорифера
Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха. Два последних параметра определяются СНиП. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоной и для Москвы равна -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах можно устанавливать калориферы, имеющие мощность меньше расчетной. При этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.
  
При расчете мощности калорифера необходимо учитывать следующие ограничения:

Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.

Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле:

I = P / U, где I — максимальный потребляемый ток, А;   Р — мощность калорифера, Вт;   U — напряжение питание:   

  • 220 В — для однофазного питания;   660 В (3 × 220В) — для трехфазного питания
.   В случае если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:  

ΔT = 2,98 * P / L, где   ΔT — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;Р — мощность калорифера, Вт; L — производительность вентиляции, м3/ч.  

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт 

для квартир, от 5 до 50 кВт для офисов. 

Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной калорифер).

Рабочеее давление, скорость движения воздуха в воздуховодах, уровень шума

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. Поэтому при проектировании вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов. Для бытовых систем приточной вентиляции обычно используются гибкие воздуховоды сечением 160—250 мм и распределительные решетки размером 200×200 мм — 200×300 мм.


    Для точного расчета схемы вентиляции и воздухораспределительной сети, а также для разработки проекта вентиляции Вы можете обратиться в наш Проектный отдел
 

  


Расчет системы вентиляции — Стандарт Климат

Вентиляцию Вы можете заказать с монтажом «под ключ», позвонив по телефону в Москве: +7(499) 350-94-14. Осуществляем проектирование и поставку вентиляции по России. Письменную заявку просим Вас отправить на email [email protected] или через форму на сайте.

Отправьте заявку и получите КП

При проектировании систем вентиляции каждый инженер проводит расчеты согласно вышеупомянутых норм.

Для расчета воздухообмена в жилых помещениях  следует руководствоваться этими нормами. Рассмотрим  самые простые методы нахождения воздухообмена:

  • по площади помещения,
  • по санитарно-гигиеническим нормам,
  • по кратностям

Расчет по площади помещения

Это самый простой расчет. Расчет вентиляции по площади делается на основании того, что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2 площади помещения, независимо от количества людей.

Расчет по санитарно-гигиеническим нормам

По санитарным нормам для общественных и административно-бытовых зданий на одного постоянно пребывающего в помещении человека необходимо 60 м3/час свежего воздуха, а на одного временного 20 м3/час.

Рассмотрим на примере:

Предположим, в доме живут 2 человека, проведем расчет по санитарным нормам согласно этим данным. Формула расчета вентиляции, включающая нужное количество воздуха выглядит так:

L=n*V (м3/час) , где

  • n – нормируемая кратность воздухообмена, час-1;
  • V – объём помещения, м3

Получим, что для спальни L2=2*60=120 м3/час, для кабинета примем одного постоянного жителя и одного временного L3=1*60+1*20=80 м3/час. Для гостиной принимаем двух постоянных жителей и двух временных (как правило, количество
постоянных и временных людей, определяется техническим заданием заказчика) L4=2*60+2*20=160 м3/час, запишем полученные данные в таблицу.

Помещение Lпр, м3/час Lвыт, м3/час
Кухня  — ≥ 90
Спальня 120 120
Кабинет 80 80
Гостинная 160 160
Коридор
Санузел ≥ 50
Ванная ≥ 25
360 525

Составив уравнение воздушных балансов ∑ Lпр = ∑ Lвыт:360<525 м3/час, видим, что количество вытяжного воздуха превышает приточный на ∆L=165 м3/час. Поэтому количество приточного воздуха необходимо увеличить на 165 м3/час. Поскольку помещения спальни, кабинета и гостиной сбалансированы то воздух необходимый для санузла, ванны и кухни можно подать в помещение смежное с ними, к примеру, в коридор, т.е. в таблицу добавится Lприт.коридор=165 м3/час. Из коридора воздухбудет перетекать в ванную, санузлы и кухню, а оттуда посредством вытяжных вентиляторов (если они установлены) или естественной тяги удалятся из квартиры. Такое перетекание необходимо для предотвращения распространения неприятных запахов и влаги. Таким образом, уравнение воздушных балансов ∑ Lпр = ∑ Lвыт: 525=525м3/час — выполняется.

Расчет по кратностям

Кратность воздухообмена — это величина, значение которой показывает, сколько раз в течение одного часа воздух в помещении полностью заменяется на новый. Она напрямую зависит от конкретного помещения (его объема). То есть, однократный воздухообмен это когда в течение часа в помещение подали свежий и удалили «отработанный» воздух в количестве равном одному объему помещения; 0,5 -кранный воздухообмен – половину объема помещения.

В нормативном документе ДБН В.2.2-15-2005 «Жилые здания» есть таблица с приведенными кратностями по помещениям. Рассмотрим на примере, как производится рассчет по данной методике.

Кратность воздухообмена в помещениях жилых зданий

Помещения Расчетная температура (зимой),ºС Требования к воздухообмену
Приток
Вытяжка
Общая комната, спальня,
кабинет
20 1-кратный
Кухня 18  —  
Кухня-столовая 20 1-кратный По воздушному
балансу квартиры,
но не менее,
м3/час
90
Ванная 25 25
Уборная 20 50
Совмещенный санузел 25 50
Бассейн 25 По расчету
Помещение для стиральной машины в квартире 18 0,5-кратный
Гардеробная для чистки и
глажения одежды
18 1,5-кратный
Вестибюль, общий коридор,
лестничная клетка, прихожая квартиры
16
Помещение дежурного
персонала
(консъержа/консъержки)
18 1-кратный
Незадымляемая лестничная
клетка
14
Машинное помещение лифтов 14 0,5-кратный
Мусоросборная камера 5 1-кратный
Гараж-стоянка 5 По расчету
Электрощитовая 5 0,5-кратный

Последовательность расчета вентиляции по кратностям следующая:

  1. Считаем объем каждого помещения в доме (объем=высота*длина*ширина).
  2. Подсчитываем для каждого помещения объем воздуха по формуле: L=n*V (n – нормируемая кратность воздухообмена, час-1; V – объём помещения, м3)

Для этого предварительно выбираем из таблицы «Санитарно-гигиенические нормы. Кратности воздухообмена в помещениях жилых зданий» норму по кратности воздухообмена для каждого помещения. Для большинства помещений нормируется только приток или только вытяжка. Для некоторых, например, кухня-столовая и то и другое. Прочерк означает, что в данное помещение не нужно подавать (удалять) воздух.

Для тех помещений, для которых в таблице вместо значения кратности воздухообмена указан минимальный воздухообмен (например, ≥90м3/ч для кухни), считаем требуемый воздухообмен равным этому рекомендуемому. В самом конце расчета, если уравнение баланса (∑ Lпр и ∑ Lвыт) у нас не сойдется, то значения воздухообмена для данных комнат мы можем увеличивать до требуемой цифры. Если в таблице нет какого-либо помещения, то норму воздухообмена для него считаем, учитывая что для жилых помещений нормы регламентируют подавать 3 м3/час свежего воздуха на 1 м2  площади помещения. Т.е. считаем воздухообмен для таких помещений по формуле: L=Sпомещения*3. Все значения L округляем до 5 в большую сторону, т.е. значения должны быть кратны 5.

Суммируем отдельно L тех помещений, для которых нормируется приток воздуха, и отдельно L тех помещений, для которых нормируется вытяжка. Получаем 2 цифры: ∑ Lпр и ∑ Lвыт

Составляем уравнение баланса ∑ Lпр = ∑ Lвыт. Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр увеличиваем значения воздухообмена для тех помещений, для которых мы в 3 пункте приняли воздухообмен равным минимально допустимому значению.

Если ∑ Lпр > ∑ Lвыт , то для увеличения ∑ Lвыт до значения ∑ Lпр увеличиваем значения воздухообмена для помещений.

Рассчет основных параметров при выборе оборудования

При выборе оборудования для системы вентиляции необходимо рассчитать следующие основные параметры:

  • Производительность по воздуху;
  • Мощность калорифера;
  • Рабочее давление, создаваемое вентилятором;
  • Скорость потока воздуха и площадь сечения воздуховодов;
  • Допустимый уровень шума.

Ниже приводится упрощенная методика подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.

Производительность по воздуху

Проектирование системы вентиляции начинается с расчета требуемой производительности по воздуху или «прокачки», измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь. Расчет начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении.

Например, для помещения площадью 50 м2 с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров/час. Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами).

Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.

Расчет воздухообмена по кратности:

L = n * S * H, где

  • L — требуемая производительность приточной вентиляции, м3/ч;
  • n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;
  • S — площадь помещения, м2;
  • H — высота помещения, м;

Расчет воздухообмена по количеству людей:

L = N * Lнорм, где

  • L — требуемая производительность приточной вентиляции, м3/ч;
  • N — количество людей;
  • Lнорм — норма расхода воздуха на одного человека:

в состоянии покоя — 20 м3/ч;

«офисная работа»  — 40 м3/ч;

при физической нагрузке — 60 м3/ч.

Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках оборудования. Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.

Типичные значения производительности систем вентиляции:

  • Для квартир — от 100 до 500 м3/ч;
  • Для коттеджей — от 1000 до 5000 м3/ч;

Мощность калорифера

Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха. Два последних параметра определяются СНиП.

Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоны, например, для Москвы  она равна -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах допускается устанавливать калориферы, имеющие мощность меньше расчетной. Но при этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.

При расчете мощности калорифера необходимо учитывать следующие ограничения:

  • Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.
  • Максимально допустимый ток потребления. Величину тока (А), потребляемого калорифером, можно вычислить по формуле:

I = P / U, где

  • I — максимальный потребляемый ток, А;
  • Р — мощность калорифера, Вт;
  • U — напряжение питания: (220 В — для однофазного питания; для трехфазной сети расчёт несколько иной).

В случае, если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:

T = 2,98 * P / L, где

  • T — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;
  • Р — мощность калорифера, Вт;
  • L — производительность вентиляции, м3/ч.

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов и загородных домов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной или паровой калорифер). В любом случае, если есть возможность, лучше использовать водяные или паровые калориферы. Экономия на обогреве в этом случае получается колоссальная.

Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха.

Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве и стоят они дороже. Поэтому, при проектировании вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов.

Для бытовых систем приточно-вытяжной вентиляции обычно используются воздуховоды диаметром 160…250 мм или сечением 400х200мм…600х350мм и распределительные решетки размером 100200 мм — 1000500 мм.

Вентиляцию Вы можете заказать с монтажом «под ключ», позвонив по телефону в Москве: +7(499) 350-94-14. Осуществляем проектирование и поставку вентиляции по России. Письменную заявку просим Вас отправить на email [email protected] или через форму на сайте.

Отправьте заявку и получите КП

Подберем оборудование, удешевим смету, проверим проект, доставим и смонтируем в срок.

Как рассчитать приточную и приточно-вытяжную вентиляцию

Система приточно-вытяжной вентиляции предназначена для удаления из помещения «отработанного» воздуха и замещения его свежим воздухом с улицы. Приточно-вытяжная система является необходимой в случае общественных или производственных помещений.

В случае производственного помещения (если мы имеем дело с цехом), вытяжная вентиляция имеет дело с воздухом, содержащим большое количество вредных веществ и примесей, являющихся побочным результатом деятельности цеха. Нагрузка по недопущению этих веществ в воздух ложится на фильтры вытяжных установок, а расчет вытяжной системы общеобменной и локальной вентиляции важен для сохранения здоровья сотрудников.

Как рассчитать вентиляцию вытяжного типа.

Для расчета в помещении системы вытяжной вентиляции необходимо знать установленную требованиями СНиП минимальный объем воздуха на одного человека в час (для вытяжной общеобменной вентиляции она находится в промежутке 20-60 м3/ч), параметры помещения (площадь и высоту) и его назначение. В случае вытяжной системы для жилой комнаты кратность воздухообмена обычно берется равной единице. А для вытяжной вентиляции цеха кратность составит 2-3.

При расчете будущей системы вентиляции вытяжного типа необходимая мощность системы (например, мы обращаемся к расчету общеобменной системы в цехе) составит большее из получившихся значений:

L  = n * S * H или L = N * Lнорм, где:

  • L – кратность воздухообмена, м3/ч;
  • n – кратность воздухообмена для данного объекта, для производственных площадей обычно берут n=2;
  • S – площадь объекта, м²;
  • H – высота объекта, м;
  • N – количество людей в цеху или другом помещении, для которого определяются параметры расчета;
  • Lнорм – количество свежего воздуха на одного человека в час, м3/ч.

Как рассчитать приточную вентиляцию.

Система приточной естественной вентиляции не всегда справляется со своей задачей, так как приточные устройства – окна и двери — зависят от погодных условий за окном (точнее, от разницы давлений и температур воздуха в помещении и за окном). Поэтому многие владельцы помещений приходят к необходимости оснастить свой объект механической вентиляцией. А на производственных площадях и в цехах механическая система необходима по требованиям СНиП, для чего и проводится расчет вентиляции.

Правильный расчет приточной вентиляции важен для получения людьми в помещении свежего воздуха и недопущения сквозняков, которые может создать слишком мощная вентиляция помещения.

Рассчитать мощность приточных установок можно и самостоятельно, но лучше для расчета проектируемой системы привлечь профессионалы. Особенно если общеобменная система вентиляции цеха дополняется установками локальной вентиляции. В таком случае расчет осложняется учетом количества и силы выброса вредных веществ, а также их классификацией (для каждого опасного вещества проводится отдельный расчет вентиляции).

Для того, чтобы рассчитать вентиляцию для будущей приточной системы, необходимо (как и в случае удаления воздуха системой вентиляции цеха) знать пространственные параметры помещения, кратность воздухообмена (для жилого помещения или для цеха), а также количество работающих или проживающих в помещении людей (в случае определения параметров для цеха, вентиляция может рассчитываться, исходя из точного количества рабочих мест, в случае заведения с переменным количеством посетителей расчет системы приточно-ориентированного типа оперирует ориентировочными параметрами).

При расчете приточной системы вентиляции используются те же формулы:

L  = n * S * H или L = N * Lнорм,

а затем, перед дальнейшими работами над будущей вентиляцией, выбирается большее число, полученное для приточной системы будущей общеобменной вентиляции.

Аэродинамический расчет системы вентиляции | Техническая библиотека ПромВентХолод

Цель аэродинамического расчета

Целью аэродинамического расчета является определение потерь давления (сопротивления) движению воздуха во всех элементах системы вентиляции – воздуховодах, их фасонных элементах, решетках, диффузорах, воздухонагревателях и других. Зная общую величину этих потерь, можно подобрать вентилятор, способный обеспечить необходимый расход воздуха. Различают прямую и обратную задачи аэродинамического расчета. Прямая задача решается при проектировании вновь создаваемых систем вентиляции, состоит в определении площади сечения всех участков системы при заданном расходе через них. Обратная задача – определение расхода воздуха при заданной площади сечения эксплуатируемых или реконструируемых систем вентиляции. В таких случаях для достижения требуемого расхода достаточно изменения частоты вращения вентилятора или его замены на другой типоразмер.


Аэродинамический расчет

начинают после определения кратности воздухообмена  помещений и принятия решения по трассировке (схеме прокладки) воздуховодов и каналов. Кратность воздухообмена является количественной характеристикой работы системы вентиляции, показывает, сколько раз в течение 1-го часа объем воздуха помещения полностью заменится новым. Кратность зависит от характеристик помещения, его назначения и может отличаться в несколько раз. Перед началом аэродинамического расчета создается схема системы в аксонометрической проекции и масштабе М 1:100. На схеме выделяют основные элементы системы: воздуховоды, их фасонные части, фильтры, шумоглушители, клапана, воздухонагреватели, вентиляторы, решетки и другие. По этой схеме, строительным планам помещений определяют длину отдельных ветвей. Схему делят на расчетные участки, которые имеют постоянный расход воздуха. Границами расчетных участков являются фасонные элементы – отводы, тройники и прочие. Определяют расход на каждом участке, наносят его, длину, номер участка на схему. Далее выбирают магистраль – наиболее длинную цепь последовательно расположенных участков, считая от начала системы до самого удаленного ответвления. Если в системе несколько магистралей одинаковой длины, то главной выбирают с большим расходом. Принимается форма поперечного сечения воздуховодов – круглая, прямоугольная или квадратная. Потери давления на участках зависят от скорости воздуха и  состоят из: потерь на трение и в местных сопротивлениях. Общие потери давления системы вентиляции равны потерям магистрали и состоят из суммы потерь всех ее расчетных участков. Выбирают направление расчета – от самого дальнего участка до вентилятора.

Рассчитывают площадь сечения воздуховода F = Q / v рек, м². Здесь  Q – расход воздуха, м³/с, v рек – рекомендуемая скорость воздуха, м/с (справочная величина). 

По площади F определяют диаметр D (для круглой формы) или высоту A и ширину B (для прямоугольной) воздуховода, м. Полученные величины округляют до ближайшего большего стандартного размера, т.е. D ст , А ст и В ст (справочная величина).

Пересчитывают фактические площадь сечения F факт и скорость  v факт

Для прямоугольного воздуховода определяют т.н. эквивалентный диаметр DL = (2A ст* B ст) / (A ст + B ст), м.

Определяют величину критерия подобия Рейнольдса  Re = 64100* D ст* v факт. Для прямоугольной формы D L = D ст.

Коэффициент трения  λ тр = 0,3164 ⁄ Re-0,25 при Re≤60000,  λ тр = 0,1266 ⁄ Re-0,167 при Re>60000.

Коэффициент местного сопротивления  λм зависит от их типа, количества и выбирается из справочников.

Потери давления на расчетном участке Р = ((λтр*L) / Dст + λм) *0,6* v2 факт, Па. Здесь L – длина расчетного участка.

Суммируя потери давления участков, получим потери магистрали и  системы вентиляции.

Зная потери давления системы, выбирают вентилятор. Создаваемое им давление и расход воздуха принимаются с 10 % запасом. По его аэродинамической характеристике, представленной фирмой-изготовителем, определяют величину коэффициента полезного действия (КПД) n.

Подсчитывают N = (Q вент * P вент) / (3600 * 1000 * n), кВт, мощность, потребляемую электродвигателем вентилятора, сравнивают ее с  данными изготовителя. Здесь вент, P вент – расход воздуха и  давление, создаваемое вентилятором.

Также рекомендуем Вам следующий материал:

Проектирование и расчет вентиляции Вентиляция Статьи и публикации по инженерным системам и оборудованию

Для подбора и заказа вентиляционного оборудования требуется выполнить расчет системы вентиляции. В штате Компании «Эколайф» присутствует инженерно-технический отдел, специалисты которого выполняют расчет систем вентиляции любой сложности для объектов различного назначения.

Договор на проектирование вентиляции

Наша компания работает с юридическими и физическими лицами. Мы заключаем договор на проектирование вентиляции, который является документом, четко определяющим стоимость и сроки выполнения работ. Заранее обговоренные условия снижают риски для обеих сторон, а также обеспечивают выгоду сделки для продавца и покупателя.
Подписание актов выполненных работ и приема-передачи оборудования означает успешное окончание работ. Мы предоставляем полный пакет документов, в том числе накладные, акты, счета-фактуры и кассовые чеки при оплате наличными, акты пуско-наладки, параметры настройки системы.
После выполнения работ мы продолжаем с вами работать, в качестве консультанта и сервисной организации.

Содержание:
1. Расчет системы вентиляции
2. Методика расчета вентиляции
3. Расчет приточной вентиляции
4. Расчет вытяжной вентиляции
5. Расчет естественной вентиляции
6. Расчет вентиляции дома

 Выезд инженера для расчета стоимости работ производится бесплатно.


Мы работаем с объектами

* Производственные предприятия, фабрики, торговые центры
* Рестораны, кафе, и все места организации общественного питания
* Многоэтажные и частные жилые дома, офисные комплексы
* Поликлиники, больницы, школы, учебные заведения
* Аэропорты, вокзалы и все государственные учреждения.

Заказать услугу


К оглавлению

Расчет системы вентиляции

Расчет системы вентиляции предусматривает расчет воздухообмена в каждом помещении, определение общего расхода воздуха и аэродинамическое сопротивление каждой из вентиляционных систем, подбор вентиляционного оборудования, расчет сечения воздуховодов вентиляции.
Расчет вентиляции производится на основе схемы системы вентиляции. По итогам расчета вентиляции подбирается оборудование и комплектующие системы вентиляции, а также воздухораспределители (решетки и диффузоры). Расчет вентиляции является одной из стадий выполнения проекта на вентиляцию.


К оглавлению

Методика расчета вентиляции

Существуют различные методики расчета вентиляции – расчет воздухообмена по людям, расчет воздухообмена по теплоизбыткам, расчет воздухообмена по вредностям.
Расчет воздухообмена по людям используется в большинстве случаев и предполагает подачу заданного объема воздуха на каждого человека в помещении. На каждое постоянное рабочее место предусматривается 60 м3/ч, а на каждого посетителя предусматривается 20 м3/ч. Если речь идет о спортзале, бассейне, фитнес-центре или танцевальном зале, то на каждого спортсмена закладывается 80 м3/ч свежего воздуха.
Расчет воздухообмена по теплоизбыткам используется в помещениях с большим числом людей (например, концертные залы, кинозалы, крытые стадионы, дискотеки) или в производственных помещениях с технологическим оборудованием, выделяющим значительное количество тепла. Требуемый расход приточного воздуха в этом случае определяется по формуле:
L = Q / (0,335·?t), где L – искомый расход воздуха (м3/ч), Q – тепловыделение в помещении (кВт), ?t – разность температур подаваемого и удаляемого воздуха в помещении (°С).
Расчет воздухообмена по вредностям актуален для производственных площадок с выбросами вредных веществ. Расчет воздухообмена производится из расчета обеспечения концентрации каждого из вредных веществ в пределах предельно допустимых концентраций (ПДК). Значения ПДК для каждого из вредных веществ принимаются согласно Гигиеническим нормативам ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны».
В некоторых случаях в помещении действуют сразу несколько факторов – и люди, и вредности, и тепло. В этом случае производится каждый из расчетов в отдельности и выбирается наибольший из полученных расходов воздуха.


К оглавлению

Расчет приточной вентиляции

Расчет приточной вентиляции является основным расчетом при проектировании систем вентиляции. Именно от расчетного расхода воздуха в приточной системе отталкиваются при расчете вытяжных систем.
Рассмотрим несколько примеров расчета приточной вентиляции:
• В офисе три помещения – на 4 рабочих места и 4 посетителя, на 5 рабочих мест и 5 посетителей и секретариат с одним рабочим местом и двумя креслами для посетителей.
Требуемый расход приточного воздуха определяется следующим образом:
L = 4·60+4·20+5·60+5·20+1·60+2·20 = 820 м3/ч
• В танцевальной студии есть зал на 20 человек и гостиная с одним рабочим местом и 5 креслами для посетителей. Требуемый расход приточного воздуха равен:
L = 20·80+1·60+5·20 = 1760 м3/ч
• В административном здании в общей сложности 150 рабочих мест, 60 мест для посетителей и 4 переговорных помещения с требуемой кратностью воздухообмена, разной трём, при объеме помещения 150м3. Требуемый расход приточного воздуха составит:
L = 150·60+60·20+4·3·150 = 12000 м3/ч
Однако на практике ситуации оказываются более сложными – присутствуют помещения фойе, гостиные залы, коридоры, приёмные, специфические помещения, как, например, массажные кабинеты, архивы, склады и др. Для правильного расчета приточной вентиляции обращайтесь к инженерам Группы Компаний «Эколайф». Мы ответим на все ваши вопросы, проконсультируем по вопросам работы и устройства систем вентиляции, выполним проектирование систем вентиляции, а также поставку оборудования и монтаж вентиляции на вашем объекте.


К оглавлению

Расчет вытяжной вентиляции

Расчет вытяжной вентиляции выполняется после расчета приточной вентиляции и основывается на обеспечении баланса приточного и вытяжного воздуха на объекте.
При расчете вытяжной вентиляции выделяют помещения, требующие отдельных вытяжных систем. В частности, отдельная вытяжка предусматривается для санузлов и душевых. При этом закладывается вытяжка в размере 50 м3/ч на каждый унятых, 25 м3/ч на каждый писсуар и 75 м3/ч на каждую душевую комнату.
Также отдельная вытяжка предусматривается для кухонь и помещений для приготовления пищи. Вытяжка из кухонь зависит от типа плиты и составляет, как правило, 90 м3/ч. Если речь идет о кухонных помещениях кафе и ресторанов, то от специального кухонного оборудования следует предусматривать местные отсосы в соответствии с заданием на проектирование.
Расчет вытяжной вентиляции офисных помещений ведется исходя из обеспечения положительного 20-процентного дисбаланса. Так, если приток в офисное помещение на 10 рабочих мест и 5 посетителей составляет 700 м3/ч, то расход вытяжного воздуха следует принять 560 м3/ч.
Отдельной задачей является сведение расходов приточной и вытяжной систем вентиляции и обеспечение их равенства для объекта в целом. Для расчета и проектирования вентиляции для конкретных объектов обращайтесь в ИС «Эколайф». Наши инженеры помогут вам сделать правильную вентиляцию для объектов любого типа.


К оглавлению

Расчет естественной вентиляции

Расчет естественной вентиляции ведется исхода из разности давлений на разных высотах атмосферы. По сути, вертикальный участок воздуховода соединяет между собой точки с разным атмосферным давлением, за счет чего естественным образом образуется тяга.
Движущее воздух давление определяется по формуле:
Р=(Рвн–Рн)·h·g, где Рвн – плотность внутреннего воздуха (кг/м3), Рн – плотность наружного воздуха (кг/м3), h – высота естественной вытяжки (м), g — ускорение свободного падения, равное 9,81 м/с2. 
Фактически, это давление приравнивается к аэродинамическому сопротивлению рассматриваемого вертикального участка воздуховода. Далее по полученному аэродинамическому сопротивлению для данного воздуховода определяется соответствующий ему расход воздуха.


К оглавлению

Расчет вентиляции дома

При расчете вентиляции дома принимают во внимание количество людей, спальных мест, площади помещений гостиных комнат.
Как правило, для спален принимается расход приточного воздуха 120 м3/ч. Приток в кабинеты и детские комнаты – по числу постоянное и временно прибывающих в них людей. В гостиных обеспечивается двухкратный воздухообмен. Вытяжка из санузлов и кухонь выполняется по общим правилам.
Для более полного и точного расчета вентиляции дома обращайтесь к специалистам Группы Компаний «Эколайф». Мы имеем значительный опыт в проектировании и монтаже вентиляции дачи.
Расчет сечения вентиляции
По расходу воздуха определяется сечение воздуховодов. Круглые воздуховоды с аэродинамической точки зрения имеют преимущества по сравнению с прямоугольными. Поэтому для малых и средних расходов воздуха преимущественно используют воздуховоды круглого сечения.
Как известно, расход воздуха через определенное сечение равен произведению скорости движения воздуха и площади сечения воздуховода. Соответственно, площадь сечения определяется по формуле:
S = G / (3600·v), где S – площадь сечения (м2), G – расход воздуха (м3/ч), v – скорость воздуха (м/с).
Определение диаметра круглых воздуховодов производится по формуле:
D2 = 4πS, где D — диаметр воздуховода, м, π — число пи (приблизительно равно 3,1415), S – площадь сечения (м2)
D=√D2
Скорость в воздуховодах рекомендуется принимать не более 4м/с, для воздуховодов большого сечения (более 600х300) допустимо несколько увеличить данную величину.

Вентиляция по объектам:
Вентиляция в квартире
Вентиляция в доме
Вентиляция коттеджа
Вентиляция офиса
Вентиляция на производстве
Вентиляция кафе
Вентиляция ресторана
Вентиляция горячего цеха
Вентиляция подвала
Вентиляция в спортивных залах
Вентиляция бассейнов
Вентиляция чистых помещений (медицинские учреждения, лаборатории)

Проектирование и расчет вентиляции: как мы работаем

Почему выгодно заказать проектирование вентиляции в ИС Эколайф
СИСТЕМА ВЕНТИЛЯЦИИ ОТ А ДО Я
Мы ориентированы на построение всей инженерной инфраструктуры под ключ. Проектирование, поставка оборудования, монтаж и оказание комплексов услуг осуществляются без привлечения смежных исполнителей. Высокая скорость работ. Обратившись к нам, вы сэкономите не только свои деньги, но и время.
РЕАЛЬНАЯ ОТВЕТСТВЕННОСТЬ ЗА РЕЗУЛЬТАТ
ИС Эколайф имеет полностью укомплектованную производственную базу, штат инженеров и монтажников. Мы выполняем все этапы работ своими силами, обеспечиваем сквозной контроль качества и на 100% отвечаем за результат. Компания предоставляет гарантию на все выполненные работы и заинтересована в длительной безаварийной работе вашего оборудования без простоев и нештатных ситуаций
НОЛЬ ПРОБЛЕМ ПРИ ПРОВЕРКАХ
Мы обеспечиваем все нормы обозначенные в СанПин, СНиП, НПБ и др. Вы защищены от внезапных предписаний и санкций надзорных органов, экономите на штрафах и других поборах.
ОПТИМАЛЬНАЯ ЦЕНА
Мы подбираем достойное оборудование в рамках даже небольшого бюджета. Вы получаете оснащение по принципу «качественно – не обязательно дорого».
Расчет сметы на услуги производится сразу же после получения необходимой информации. Наш принцип — полная прозрачность стоимости работ. Указанная в договоре сумма – это фиксированная цена, которая не будет изменена нами, если вы сами не захотите пересмотреть смету. Для постоянных клиентов предусмотрены специальные скидки и условия поставки.
УДОБСТВО
100% эксплуатации на аутсорсинг. Вы можете отдать обслуживание всех инженерных сетей объекта одному исполнителю – компании «Эколайф». Мы работаем официально по договору и закрываем все вопросы по эксплуатации, и плановые, и срочные, а вам удобно спрашивать с одного исполнителя.

Компания Инженерные системы Эколайф — это команда опытных и лицензированных специалистов по монтажу и обслуживанию всех видов инженерных систем с последующим оформлением всего пакета документов.

• 5 лет на рынке Москвы и Московской области
• 7 профильных лицензий и сертификатов
• 40 работников, 4 служебных автомобиля и 3 рабочие бригады для оперативного выполнения заказов
• 2 комплекта телеинспекции и профессиональное европейское оборудование
• Снизим ваши расходы на 20%. Цены на наши услуги ниже средних по рынку без потери в качестве работ и обслуживании.


Гарантия качества 
Компания Эколайф гарантирует высокое качество проектирования вентиляции.



К НАЧАЛУ СТРАНИЦЫ

 

Расчет вентиляции

Расчёт вентиляции, выбор оборудования и установку системы вентиляции. Это достаточно сложный и важный процесс, требующий квалифицированного подхода. В процессе расчёта вентиляции определяется необходимый воздухообмен, составляется принципиальная схема вентиляции, которая оптимально отвечает всем аэродинамическим расчетам. В заключительной стадии производится подбор и установка оборудования и системы управления.

Существуют жёсткие правила по организации воздухообмена в различных помещениях, зависящие от количества людей в помещении, наличия тепловыделяющей техники и других параметров. При расчете вентиляции пользуются понятием кратности воздухообмена, которое показывает сколько раз обновляется воздух в помещении за один час. В жилых помещениях воздух должен обновляться в среднем 1 раз в час, в офисах — 3 раза и выше.

Немаловажное значение при расчёте вентиляции занимают этапы выбора модели и мощности для вентилятора и калорифера. Работающий в системе вентилятор должен производить минимум шума и при этом обеспечивать достаточное рабочее давление, необходимое для преодоления потоком воздуха всех местных сопротивлений в воздуховодах, возникающих на изгибах, стыках и местах смены диаметров. Калорифер должен справляться с нагревом до определённой температуры всего проходящего через него воздуха.

Производимый специалистами нашей компании расчёт вентиляции отвечает всем современным требованиям и нормам. Наши клиенты в итоге получают грамотно спроектированную систему вентиляции и кондиционирования, простую в управлении, производящую минимум шума и максимум свежего воздуха.

Расчет вентиляции, как правило, начинается с подбора оборудования, подходящего по таким параметрам, как производительность по прокачиваемому объему воздуха и измеряемому в кубометрах в час.

Подробнее

Важным показателем в системе является кратность воздухообмена.

Кратность воздухообмена показывает, сколько раз происходит полная замена воздуха в помещении в течение часа.

Кратность воздухообмена определяется СНиП и зависит от:

  • назначения помещения
  • количества оборудования
  • выделяющего тепло,
  • количества людей в помещении.

В сумме все значения по кратности воздухообмена для всех помещений составляют производительность по воздуху.

Следующий этап в расчете вентиляции — проектирование воздухораспределительной сети, состоящей из следующих компонентов

  • Воздуховоды
  • Распределители воздуха
  • Фасонные изделия (переходники, повороты, разветвители.)

Сначала разрабатывается схема воздуховодов вентиляции, по которой производится расчет уровня шума, напора по сети и скорости потока воздуха.

Напор по сети напрямую зависит от того, какова мощность используемого вентилятора и рассчитывается с учетом диаметров воздуховодов, количества переходов с одного диаметра на другой, и количества поворотов. Напор по сети должен возрастать с увеличением длины воздуховодов и количества поворотов и переходов.

Проектируя системы вентиляции, необходимо находить оптимальное соотношение между мощностью вентилятора, уровнем шума и диаметром воздуховодов.

Расчет мощности калорифера производится с учетом необходимой температуры в помещении и нижним уровнем температуры воздуха снаружи.

Также при выборе оборудования для системы вентиляции необходимо рассчитать следующие параметры:

  • Производительность по воздуху;
  • Мощность калорифера;
  • Рабочее давление, создаваемое вентилятором;
  • Скорость потока воздуха и площадь сечения воздуховодов;
  • Допустимый уровень шума.

Ниже приводится упрощенная методика подбора основных элементов системы приточной вентиляции, используемой в бытовых условиях.

Производительность по воздуху

Подбор оборудования для системы вентиляции начинается с расчета требуемой производительности по воздуху или «прокачки», измеряемой в кубометрах в час. Для этого необходим поэтажный план помещений с экспликацией, в которой указаны наименования (назначения) каждого помещения и его площадь. Расчет начинается с определения требуемой кратности воздухообмена, которая показывает сколько раз в течение одного часа происходит полная смена воздуха в помещении. Например, для помещения площадью 50 квадратных метров с высотой потолков 3 метра (объем 150 кубометров) двукратный воздухообмен соответствует 300 кубометров в час. Требуемая кратность воздухообмена зависит от назначения помещения, количества находящихся в нем людей, мощности тепловыделяющего оборудования и определяется СНиП (Строительными Нормами и Правилами). Так, для большинства жилых помещений достаточно однократного воздухообмена, для офисных помещений требуется 2-3 кратный воздухообмен.

Для определения требуемой производительности необходимо рассчитать два значения воздухообмена: по кратности и по количеству людей, после чего выбрать большее из этих двух значений.

  1. Расчет воздухообмена по кратности:

    L = n * S * H, где

    L — требуемая производительность приточной вентиляции, м3/ч;

    n — нормируемая кратность воздухообмена: для жилых помещений n = 1, для офисов n = 2,5;

    S — площадь помещения, м2;

    H — высота помещения, м;

  2. Расчет воздухообмена по количеству людей:

    L = N * Lнорм, где

    L — требуемая производительность приточной вентиляции, м3/ч;

    N — количество людей;


    Lнорм — норма расхода воздуха на одного человека:
    • в состоянии покоя — 20 м3/ч;
    • работа в офисе — 40 м3/ч;
    • при физической нагрузке — 60 м3/ч.

Рассчитав необходимый воздухообмен, выбираем вентилятор или приточную установку соответствующей производительности. При этом необходимо учитывать, что из-за сопротивления воздухопроводной сети происходит падение производительности вентилятора. Зависимость производительности от полного давления можно найти по вентиляционным характеристикам, которые приводятся в технических характеристиках. Для справки: участок воздуховода длиной 15 метров с одной вентиляционной решеткой создает падение давления около 100 Па.

Типичные значения производительности систем вентиляции

  • Для квартир — от 100 до 500 м3/ч;
  • Для коттеджей — от 1000 до 2000 м3/ч;
  • Для офисов — от 1000 до 10000 м3/ч.

Мощность калорифера

Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха. Два последних параметра определяются СНиП. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоной и для Москвы равна -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах можно устанавливать калориферы, имеющие мощность меньше расчетной. При этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года.

При расчете мощности калорифера необходимо учитывать следующие ограничения

  • Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.
  • Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле:

    I = P / U, где

    I — максимальный потребляемый ток, А;

    Р — мощность калорифера, Вт;

    U — напряжение питание:

    • 220 В — для однофазного питания;
    • 660 В (3 × 220В) — для трехфазного питания.

В случае если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле:

ΔT = 2,98 * P / L, где

ΔT — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;

Р — мощность калорифера, Вт;

L — производительность вентиляции, м 3/ч.

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт для квартир, от 5 до 50 кВт для офисов. Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной калорифер).

Рабочее давление, скорость потока воздуха в воздуховодах и допустимый уровень шума

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением 4—5 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. Поэтому при проектировании систем вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов.

Для бытовых систем приточной вентиляции обычно используются гибкие воздуховоды сечением 160—250 мм и распределительные решетки размером 200×200 мм — 200×300 мм. Для точного расчета воздухораспределительной сети необходимо обращаться к специалистам. Специалисты нашей фирмы ответят на любые вопросы, связанные с системами вентиляции, в том числе и на вопросы по расчету вентиляции.

Основные правила расчета систем естественной и вытяжной системы вентиляции помещения

Главная | Основные правила расчета систем естественной и вытяжной системы вентиляции помещения

Жилое, складское, торговое, производственное и любое другое помещение нуждается в естественной или принудительной вентиляции, параметры которой должны соответствовать требованиям безопасности и технологической целесообразности. От того, насколько точно будет проведен расчет систем естественной вентиляции или системы принудительного воздухообмена, зависит комфорт  проживающих или работающих в помещении людей и наличие условий для хранения товаров или работы оборудования. При этом недопустим и недостаток воздухообмена что приводит к накоплению углекислого газа и влаги, так и его переизбыток. В последнем случае — это активное движение воздушных масс в помещении, повышенные расходы на установку и содержание вентиляции, а также другие вредные последствия. Поэтому любой проект требует грамотный расчет систем вентиляции с учетом всех действующих факторов. Для полного расчета необходимы специальные знания и навыки, но краткие, наиболее основные моменты расчета систем вентиляции помещения мы рассмотрим ниже.

Основные правила расчета естественной вентиляции

Естественная вентиляция наиболее часто используется в жилых помещениях, при канальной системе воздухообмена – системы воздуховодов проложенных в стенах и перекрытиях здания. В самом простом случае (и наименее эффективном) возможна и бесканальная система вентиляции с воздухообменом через имеющиеся не плотности – дверные и оконные проемы, поры стен и т. д. Но в этом случае невозможно выполнение расчета систем вентиляции из-за неконтролируемости процесса, сложности или невозможности определения исходных данных, которые к тому же постоянно меняются. Недостатками бесканального воздухообмена являются большие потери тепла, малая эффективность и невозможность использования в некоторых типах помещений.

Принцип действия естественной вентиляции основан на физическом свойстве воздуха подниматься вверх при нагреве. Благодаря этому отработанный нагретый воздух поднимается вверх по вентиляционным каналам и выводится через выводы на крыше здания. При невозможности обеспечения необходимого воздухообмена с помощью естественной вентиляции или наличия каких либо ограничений в её работе (неправильная планировка, старое здание и т. д.) здание переоборудуется на принудительную систему воздухообмена.

Основные формулы расчета

Потребная величина воздушного обмена является основным параметром, на основании которого и производятся расчеты систем вентиляции. Для её определения используется две формулы – расчета по количеству людей и по площади помещения определяемые в кубометрах в час. Специалисты производят расчет систем вентиляции производственного помещения, как и любых других помещений ориентируясь на требования Строительных норм и правил — СНиП 41-01-2003 или МГСН 3.01.01.

Важно! При расчетах специалисты чаще применяют требования СНиП 41-01-2003 как наиболее жесткие и соответствующие интересам заказчика.

Для расчета производительности системы вентиляции по количеству людей применяется следующая формула:

L=Lnorm x N

Где:

L – потребная производительность вентиляции в м3/ч
Lnorm– нормированный показатель расхода воздуха на одного человека согласно СНиП 41-01-2003. Составляет 60 м3/ч
N – количество человек длительное время пребывающих в данном помещении.

Следующая формула – это расчет системы местной вентиляции по кратности. Воздух в помещении, где находятся люди, должен полностью обновляться не менее одного раза в час.  Производительность системы вентиляции должна соответствовать этому требованию, т. е. быть не менее значения определяемого по указанной ниже формуле расчета по кратности.

L= nxSxH

Где:

L – потребная производительность вентиляции в м3/ч;
n – кратность воздухообмена предусмотренная нормативными требованиями. Для жилых помещение это число составляет 1-2, для офисов – 2-3;
S – площадь помещения в м2;
H – высота помещения  в м.

Полученные оба значения L, по количеству людей и по кратности, сравниваются и из них выбирается большее. Окончательный расчет систем вентиляции и кондиционирования намного более сложен и требует учета многих других факторов – работающих приборов, положения помещения относительно сторон света и мн. другое. Но эти расчеты уже следует доверить специалистам.

Когда необходима принудительная вентиляция

Принято, что система принудительной вентиляции необходима для помещений площадью более 100 м2. Она используется практически во всех промышленных и торговых помещениях, а также в офисах,  складах и других нежилых помещениях. Для жилых помещений необходимость в проектировании и расчете системы вентиляции возникает при большом метраже или наличии факторов препятствующих естественной вентиляции успешно справляться с поставленной задачей.

Одним из традиционно сложных помещений является кухня, где мощность вытяжки должна соответствовать типу плиты. Приведём некоторые правила проектирования:

  • При установке на кухне электроплиты или двухкомфорочной газовой плиты мощность вытяжки в помещении должна быть не менее 60 м3/ч.
  • При установке 4-комфорочной газовой плиты – не менее 90 м3/ч.
  • Для совмещенного санузла мощность вытяжки должна быть не менее 50 м3/ч, для раздельного – 25 м3/ч.
  • Для совмещенного санузла с ширмой рекомендуется использовать два вытяжных вентилятора меньшей мощности вместо одного большого.

В таком санузле лучше установить два вытяжных вентилятора меньшей мощности, чем один большей, так как ширма является препятствием на пути воздушных масс.

Приточная вентиляция

При расчете систем вентиляции и аспирации большое внимание приточной вентиляции. Обычно она устанавливается в тех случаях, когда мощность вытяжки слишком велика, имеющиеся неплотности не справляются с доступом потребного количества воздуха и возможно возникновение сквозняков и потерь тепла. Приточная вентиляция необходима и в закрытых помещениях, при незначительном или полном отсутствии доступа воздуха извне.

В жилых помещениях (квартирах, коттеджах, частных домах) приточная вентиляция может обеспечить двукратный воздухообмен. При проектировании очень важно правильно разместить оборудование и обеспечить направление потоков воздуха в нужном направлении, Также необходимо обеспечить равновесие между входящими и выходящими воздушными потоками – приточной и вытяжной вентиляцией.

Аэродинамический расчет и противодымная вентиляция

Данный расчет проводится для систем принудительного воздухообмена в зданиях с большим количеством помещений, при невозможности использования естественной вентиляции. Используется он при проектировании больниц, учебных заведений, офисов, предприятий торговли и общепита – там, где находится большое количество людей и особо важно правильно распределить направление потоков воздуха.

Роль противодымной вентиляции – блокировка и ограничение распространения дыма и газа при возгорании по другим помещениям по системам воздуховодов. Устанавливается она, как правило, в промышленных зданиях, офисных и торговых центрах – местах с большим количеством людей и повышенной опасностью воспламенения. Данная система эффективна при начальных стадиях возгорания, упрощает проведение эвакуации людей и материальных ценностей, помогает в локализации и устранении пожара.

Сделать заказ

Используйте расчет изменений воздуха в помещении для определения CFM

Инженерный воздушный поток в помещении может представлять реальную проблему при балансировке системы HVAC. В большинстве расчетов для определения необходимого расхода воздуха используются только теплопотери или прирост помещения, и часто не учитываются потребности в вентиляции помещения. Давайте посмотрим, как расчет воздухообмена может упростить этот этап балансировки воздуха.

Что такое воздухообмен?

Воздухообмен — это количество раз, когда воздух входит и выходит из комнаты из системы HVAC за один час.Или сколько раз комната заполнялась воздухом из регистров приточного воздуха за шестьдесят минут.

Затем вы можете сравнить количество изменений воздуха в помещении с приведенной ниже таблицей требуемых изменений воздуха. Если он находится в пределах допустимого диапазона, вы можете приступить к проектированию или уравновешиванию воздушного потока и получить дополнительную уверенность в том, что вы поступаете правильно. Если это выходит за пределы допустимого диапазона, вам лучше еще раз взглянуть.

Формула изменения воздуха

Чтобы рассчитать воздухообмен в помещении, измерьте расход приточного воздуха в комнату, умножьте CFM на 60 минут в час. Затем разделите на объем комнаты в кубических футах:

Проще говоря, мы заменяем CFM на кубические футы в час (CFH). Затем мы вычисляем объем комнаты, умножая высоту комнаты на ширину и длину. Затем просто делим CFH на объем комнаты.

Вот пример того, как работает полная формула:

Теперь сравните 7,5 воздухообмена в час с требуемым воздухообменом для этого типа помещения в таблице воздухообмен в час ниже .Если это комната для обеда или отдыха, где требуется 7-8 воздухообменов в час, вы точно попали в цель. Если это бар, который требует 15-20 воздухообменов в час, пора подумать.

Комнатная формула CFM

Давайте посмотрим на эту инженерную формулу по-другому. Например, что, если воздушный поток неизвестен, и вам нужно рассчитать необходимый CFM для комнаты? Вот четырехэтапный процесс расчета CFM помещения:

Шаг первый — Используйте приведенную выше таблицу изменения воздуха в час , чтобы определить требуемые изменения воздуха, необходимые для использования помещения. Допустим, это конференц-зал, требующий 10 воздухообменов в час.

Шаг второй — Рассчитайте объем комнаты (ДхШхВ).

Шаг третий — Умножьте объем помещения на требуемый объем воздухообмена.

Шаг четвертый. Разделите ответ на 60 минут в час, чтобы найти нужную комнату. CFM:


Вот пример того, как работать по формуле:

При проектировании или балансировке системы, требующей дополнительного воздушного потока для вентиляции, помните, что в этой комнате обычно требуется постоянная работа вентилятора, когда она занята.Это может представлять проблему для других комнат в той же зоне, поэтому примите это во внимание.

Для многих из этих помещений может потребоваться значительное количество наружного воздуха. Содержание БТЕ в этом воздухе должно быть включено в приток тепла или теплопотери здания при определении размера оборудования для обогрева и охлаждения.

Попрактикуйтесь в этих расчетах несколько раз в магазине или офисе. Затем выполните расчеты в полевых условиях несколько раз в течение следующей недели, чтобы проверить поток воздуха в помещениях с необычными требованиями к вентиляции. Изучите Таблицу изменений воздуха в час , чтобы ознакомиться с помещениями, в которых требуется больше вентиляции, чем требуется для обогрева или охлаждения.

R ob «Doc» Falke обслуживает отрасль в качестве президента National Comfort Institute, обучающей компании и членской организации, работающей в сфере HVAC. Если вы подрядчик или технический специалист по ОВКВ, заинтересованный в бесплатной процедуре расчета замены воздуха, , свяжитесь с доктором по телефону robf @ ncihvac.com или позвоните ему по телефону 800-633-7058. Посетите веб-сайт NCI по адресу nationalcomfortinstitute.com для получения бесплатной информации, статей и загрузок.

Шаг 3. Скорость вентиляции всего здания

Определите воздушный поток, необходимый для вентиляции всего здания

Система вентиляции всего здания заменяет заданное количество застоявшегося внутреннего воздуха на вентиляционный воздух снаружи. Он разработан для бесшумной работы в фоновом режиме для удаления влаги и загрязняющих веществ в помещении.Стандарт ASHRAE 62.2 предполагает, что в дом будет поступать наружный воздух в результате инфильтрации со скоростью 2 кубических футов в минуту / 100 кв. Футов. Механическая вентиляция используется для обеспечения дополнительного расчетного объема вентиляции всего здания.

ASHRAE Standard 62.2 предлагает два метода расчета требуемого расхода воздуха для вентиляции всего здания в кубических футах в минуту (куб. Фут / мин). Использование приведенной ниже формулы обычно будет более точным, чем использование предписывающей таблицы (стандарт ASHRAE 62.2, таблица 4.1a) ниже, но оба метода приемлемы.Описан дополнительный метод расчета для снижения скорости вентиляции всего здания в существующем доме с высокой инфильтрацией.

Расчет расхода воздуха для многоквартирного дома? Просмотр дополнительной информации.

Приведенные ниже требуемые нормы вентиляции всего здания полезны только для расчета размеров непрерывно работающих систем. Если вы планируете систему вентиляции всего здания с прерывистой работой, размер вентилятора должен соответствовать графику работы.Чем короче периоды вентиляции, тем больший поток воздуха требуется для обеспечения эквивалентной вентиляции всего здания. (См. Циклы прерывистой вентиляции.)

Наилучшая практика


Рекомендация

Пропустите необязательные вычисления. Загерметизируйте дом максимально плотно. Установите локальную вытяжную вентиляцию на кухне, в ванных комнатах и ​​любых других помещениях с высоким уровнем загрязнения. Обеспечьте вентиляцию всего здания, по крайней мере, со скоростью, определяемой формульным или табличным методом.

Предупреждение о путанице

Вентилятор для всего здания , обычно от 30 до 130 куб. Футов в минуту, отличается от вентиляторов для всего дома , который представляет собой вентилятор мощностью 3 000–5 000 куб. Футов в минуту, используемый для ночного охлаждения в жаркую погоду. Ссылки на требования норм Калифорнии для изолированных жалюзи на вентиляторах для всего дома относятся к большому отверстию на чердаке, необходимому для крупных охлаждающих вентиляторов для всего дома.

Метод формул

Требуемый расход для вентиляции всего здания можно рассчитать по следующей формуле из стандарта ASHRAE 62.2:

Скорость непрерывной вентиляции всего здания в куб. Фут / мин =

площадь


100

+ (количество спален + 1) x 7,5

Табличный метод

Второй способ определить требуемый расход вентиляции всего здания в кубических футах в минуту — использовать предписывающую таблицу ASHRAE:

Стандарт ASHRAE 62.2 Таблица 4.1a
Скорость непрерывной вентиляции всего здания, куб. Фут / мин
Общая площадь
(кв. Футы)
Кол-во спален
0–1 2–3 4–5 6–7> 7
<1500 30 45 60 75 90
1501–3000 45 60 75 90 105
3001-4500 60 75 90 105 120
4501-6000 75 90 105 120 135
6001-7500 90 105 120 135 150
> 7500 105 120 135 150 165

Дополнительный расчет

Внимание!

Годовая оценка утечки воздуха через вентиляционную дверь является средней за все сезоны года.Использование дополнительных расчетов для уменьшения скорости вентиляции всего здания на основе этого среднего значения означает, что в доме, вероятно, будет серьезно недовентиляция в мягкую погоду.

Этот метод обычно используется в финансируемых из федерального бюджета программах по утеплению малообеспеченных домов для существующих домов с высокой степенью инфильтрации. Требуемый уровень вентиляции всего здания можно отрегулировать в сторону понижения, если дом очень негерметичен, а целевой показатель герметичности выше, чем стандартная скорость утечки воздуха по ASHRAE 62.2, равная 2 кубических футов в минуту / 100 квадратных футов площади пола.Его можно использовать только в том случае, если подрядчик может использовать оборудование для проверки дверцы вентилятора и оборудование для проверки потока вентилятора, и это применимо только к существующим домам (не к новому строительству). Подрядчик может выбрать одну или обе дополнительные регулировки скорости механической вентиляции всего здания.

Пример дома: Чтобы проиллюстрировать, как рассчитать корректировку, вот пример, использующий дом площадью 1500 кв.м с 3 спальнями

Сначала определите расход воздуха, необходимый для вентиляции всего здания, используя формулу или таблицу 4. 1а выше.

Скорость вентиляции всего здания, куб. Фут / мин =
1500/100 + (3 + 1) x 7,5 = 45 кубических футов в минуту
45 куб. Футов в минуту — это требуемая скорость вентиляции всего здания, которую вы регулируете.

После завершения герметизации воздуха выполните последний тест дверцы вентилятора, чтобы получить прогнозируемое годовое количество утечек в кубических футах в минуту. Сравните прогнозируемое значение годовой утечки со значением по умолчанию 2 кубических футов в минуту / 100 квадратных футов.Если годовая величина утечки в кубических футах в минуту превышает 2 кубических фута в минуту / 100 квадратных футов, половину разницы можно вычесть из скорости непрерывной механической вентиляции всего здания.

Расчет образца: Используя снова образец птичника площадью 1500 кв. Футов, мы подсчитали, что для этого требуется 45 кубических футов в минуту непрерывной механической вентиляции всего здания. Заключительное испытание дверцы вентилятора, проведенное после завершения всех работ по герметизации воздуха, прогнозирует среднегодовую утечку 40 кубических футов в минуту. Стандарт ASHRAE 62.2 предполагает, что в доме площадью 1500 квадратных футов утечка воздуха составляет 2 кубических футов в минуту / 100 квадратных футов, или 30 кубических футов в минуту.Поскольку дом более негерметичен, чем предполагалось ASHRAE по умолчанию, подрядчик может снизить скорость вентиляции всего здания вдвое ниже разницы между значением герметичности по умолчанию (30 кубических футов в минуту) и измеренной (40 кубических футов в минуту).

Поправка на утечку = (прогнозируемые 40 куб. Футов в минуту — предполагаемые 30 куб. Футов в минуту) = 10 куб. Футов в минуту

Таким образом, половина 10 кубических футов в минуту или 5 кубических футов в минуту может быть вычтена из скорости вентиляции всего здания. Окончательная скорректированная скорость непрерывной механической вентиляции составляет 45 кубических футов в минуту — 5 кубических футов в минуту или 40 кубических футов в минуту .

Стандарт ASHRAE 62.2-2010, приложение A, позволяет провести корректировочный расчет в


секунды для скорости вентиляции всего здания

Поскольку этот расчет не является частью стандарта ASHRAE 62.2-2007, , его нельзя использовать для соответствия требованиям Раздела 24 . Опция применима только к существующим домам или квартирам (не новостройкам), в которых кухня и ванная комната не имеют надлежащей вытяжной вентиляции. Расчет используется некоторыми федеральными бригадами по утеплению, когда:

  • Существующая кухонная вытяжка и / или вентиляторы для ванны отсутствуют или не имеют достаточного потока для удовлетворения местных требований к вытяжке И
  • невозможно установить или обновить отсутствующие или неработающие вентиляторы

Определите количество локальных вытяжек на кухне и в ванной комнате. В этом примере в доме нет кухонной вентиляции и один старый вентилятор для ванны с потоком воздуха 30 куб. Для кухонной вытяжки и вентилятора для ванны с прерывистым режимом работы согласно стандарту ASHRAE Standard 62.2 требуется минимум 100 кубических футов в минуту для вытяжки и 50 кубических футов в минуту для вентилятора ванны.

Пример расчета: Предположим, что в приведенном выше примере помещения не установлена ​​вытяжка, а воздушный поток вентилятора ванны измеряется на уровне 30 кубических футов в минуту. В доме не хватает 100 кубических футов в минуту вентиляции кухни и 20 кубических футов в минуту из необходимых 50 кубических футов в минуту вентиляции ванной комнаты, в результате чего местная вытяжная вентиляция отсутствует в общей сложности на 120 кубических футов в минуту.Приложение A стандарта ASHRAE 62.2-2010 позволяет увеличить скорость вентиляции всего здания, чтобы покрыть недостаток местных вытяжных вентиляторов на кухне и в ванной (120 куб. Футов в минуту). Добавление 25% недостающей местной вытяжной вентиляции (25% от 120 кубических футов в минуту) к постоянной скорости вентиляции всего здания будет соответствовать местным требованиям вытяжки в этом примере.

25% от 120 куб. Футов в минуту — это 30 куб. Футов в минуту.

30 куб. Футов в минуту + 45 куб. Футов в минуту (скорость вентиляции всего здания) = 75 куб. Футов в минуту

Так, в примере, согласно стандарту ASHRAE 62.2-2010, Приложение A, вентилятор 75 кубических футов в минуту непрерывного действия для вентиляции всего здания также будет отвечать требованиям местной вытяжной вентиляции.

Калькулятор

воздухообменов в час (формула на основе кубических футов в минуту)

ACH или A ir C hanges P er H наш — это показатель, который показывает нам, сколько раз устройство HVAC может заполнить воздухом весь объем помещения. Это особенно полезно при сравнении различных очистителей воздуха или кондиционеров.

Пример: Рассмотрим очиститель воздуха с расходом воздуха 250 куб. Футов в минуту. Мы поместили его в комнату площадью 200 кв. Футов с потолком стандартной высоты (8 футов). Сколько воздухообменов в час производит установка?

Расчет: 250 CFM — 250 кубических футов в минуту. За один час (60 минут) мы получаем 60 * 250 = 15 000 кубических футов в час. Общий объем комнаты составляет 200 квадратных футов * 8 футов = 1600 кубических футов. Такой очиститель воздуха способен полностью изменить объемный воздух в помещении 15.000 / 1,600 = 9,375 раз.

Ответ: ACH = 9,375

Вот удобный калькулятор воздухообмена в час, которым вы можете свободно пользоваться. Просто укажите площадь, высоту потолка и CFM рассматриваемого устройства HVAC, и вы сможете рассчитать ACH:

.

Калькулятор ACH

Формула (рассчитайте ACH самостоятельно)

Формула расчета воздухообмена в час на основе CFM достаточно проста. Практически каждый может рассчитать это с помощью цифрового калькулятора.Все, что вам нужно знать, это площадь помещения, высота и CFM.

Это формула для ACH (воздухообмен в час):

ACH = CFM x 60 / (Площадь x Высота)

, где «Area» — это площадь помещения, в котором вы собираетесь установить устройство HVAC, а «Height» — это высота потолка.

Формула: «сколько кубических футов воздуха может обеспечить блок HVAC каждый час», деленное на объем помещения.

Мы всегда получаем CFM, но это объем воздуха в минуту .Чтобы рассчитать воздухообмен в час , мы должны перевести это в часы. Следовательно, умножение на 60 в приведенном выше уравнении.

Объем помещения рассчитывается как длина * ширина * высота . Умножив длину комнаты на ее ширину, мы получим площадь поверхности («Площадь»). Чтобы получить объем, нам нужно умножить площадь на высоту.

Сколько производителей очистителей воздуха ACH используют

Расчет рекомендуемой зоны охвата в технических характеристиках очистителя воздуха основан на рейтинге CADR, максимальном расходе воздуха и ACH.

По сути, для расчета рекомендуемой зоны охвата разные компании по очистке воздуха используют 1-5 воздухообменов в час. Те, которые используют 5 ACH, очень тщательно удаляют из воздуха загрязнители, превышающие рекомендуемый размер комнаты, используя на 2 ACH меньше.

Вот список того, сколько ACH различных производителей воздухоочистителей обычно используют для расчета рекомендуемой зоны охвата:

  • Alen BreatheSmart использует 2 ACH. Пример: Alen BreatheSmart 75i — очиститель воздуха №1 — имеет рекомендуемую зону охвата 1300 кв. Футов.Его максимальный воздушный поток составляет 350 кубических футов в минуту. При 5 ACH рекомендуемая зона покрытия составляет 520 кв. Футов.
  • Зона покрытия очистителей воздуха
  • Coway основана на 2 или 5 кондиционерах. Пример: Big Airmega 400 имеет зону покрытия 1560 кв. Футов с рейтингом 350 CADR (2 ACH). Высокопроизводительный Coway AP-1512HH имеет зону покрытия 361 кв.фут с рейтингом 246 CADR (5 ACH).
  • Molekule имеет рекомендованную зону покрытия, но не предоставляет данных по ACH, CADR или максимальному расходу воздуха. Например, Molekule Air имеет зону покрытия 600 кв. Футов, но невозможно определить, сколько воздухообменов он производит в час.
  • Honeywell использует 5 ACH. Пример: Honeywell HPA300 имеет зону покрытия 465 кв. Футов с рейтингом 300 CADR (5 ACH).
  • Levoit очистители воздуха интересны; они используют 3.33 ACH со своей лучшей моделью. Пример: Levoit LV-h235 имеет зону покрытия 463 кв. Фута и рейтинг 360 CADR. Воздух меняют каждые 18 минут; Таким образом, установка Levoit производит 3,33 воздухообмена в час.
  • Okaysou использует 3 воздухообмена в час. Пример: их самый популярный очиститель воздуха Okaysou AirMax8L имеет площадь покрытия 500 кв. Футов с рейтингом 210 CADR (3 ACH).
  • Дайсон очень стесняется раскрывать размеры комнаты. Вот почему невозможно рассчитать ACH для любого очистителя воздуха Dyson.

Из всех устройств HVAC очистители воздуха уникальны в том, что касается ACH, поскольку их работа наиболее точно соответствует спецификации ACH. По сути, ACH — второй по величине определяющий фактор, который указывает, насколько хорошо очистители воздуха очищают воздух.

Важно понимать, что расчет ACH составляет исключительно на основе расхода воздуха .Это не показатель того, насколько хорошо работает система фильтрации очистителя воздуха; он не измеряет эффективность фильтров HEPA, фильтров с активированным углем или даже фильтров генератора озона. Например, высокий ACH не снижает напрямую вероятность роста плесени (осмотр и тестирование плесени могут подтвердить это).

Существует еще одна более точная спецификация для очистителей воздуха, которая измеряет эффективность системы фильтрации; рейтинг CADR. Рейтинг CADR пропорционален как ACH, так и различным фильтрам, которые может использовать очиститель воздуха.По этой причине расчет ACH и последующий расчет CADR наиболее подходят для очистителей воздуха.

Чтобы рассчитать размер комнаты на основе расхода воздуха (в кубических футах в минуту), вы должны использовать калькулятор кубометров в минуту.

Если у вас есть какие-либо вопросы относительно расчета воздухообмена в час, вы можете задать их нам в комментариях ниже.

Размеры, расчет и проектирование воздуховодов для обеспечения эффективности

Как спроектировать систему воздуховодов ws

Как спроектировать систему воздуховодов.В этой статье мы узнаем, как рассчитать и спроектировать систему воздуховодов для повышения эффективности. Мы включим полностью проработанный пример, а также использование моделирования CFD для оптимизации производительности и эффективности с помощью SimScale. Прокрутите вниз, чтобы посмотреть БЕСПЛАТНЫЙ видеоурок на YouTube!

🏆🏆🏆 Создайте бесплатную учетную запись SimScale для тестирования облачной платформы моделирования CFD здесь: https://www.simscale.com/ Имея более 100 000 пользователей по всему миру, SimScale — это революционная облачная платформа CAE, которая мгновенно доступ к технологиям моделирования CFD и FEA для быстрого и простого виртуального тестирования, сравнения и оптимизации конструкций в нескольких отраслях, включая HVAC , AEC и electronics .

Методы проектирования воздуховодов

Существует множество различных методов, используемых для проектирования систем вентиляции, наиболее распространенными из которых являются:

  • Метод снижения скорости: (жилые или небольшие коммерческие установки)
  • Метод равного трения: (от среднего до большого размера коммерческие установки)
  • Восстановление статического электричества: очень большие установки (концертные залы, аэропорты и промышленные объекты)

Мы собираемся сосредоточиться на методе равного трения в этом примере, поскольку это наиболее распространенный метод, используемый для коммерческих систем HVAC и его достаточно просто следовать.

Пример проектирования

План здания

Итак, сразу перейдем к проектированию системы. Мы возьмем небольшое инженерное бюро в качестве примера, и мы хотим сделать чертеж-компоновку здания, который мы будем использовать для проектирования и расчетов. Это действительно простое здание, в нем всего 4 офиса, коридор и механическое помещение, в котором будут находиться вентилятор, фильтры и воздухонагреватель или охладитель.

Нагрузка на отопление и охлаждение в здании

Первое, что нам нужно сделать, это рассчитать нагрузку на отопление и охлаждение для каждой комнаты.Я не буду рассказывать, как это сделать, в этой статье, нам придется рассказать об этом в отдельном руководстве, поскольку это отдельная предметная область.

После того, как они у вас есть, просто сложите их вместе, чтобы найти самую большую нагрузку, поскольку нам нужно определить размер системы, чтобы она могла работать при пиковом спросе. Охлаждающая нагрузка обычно самая высокая, как в данном случае.

Теперь нам нужно преобразовать охлаждающую нагрузку в объемный расход, но для этого нам сначала нужно преобразовать это в массовый расход, поэтому мы используем формулу:

mdot = Q / (cp x Δt)

Рассчитать массовый расход воздуха скорость от охлаждающей нагрузки

Где mdot означает массовый расход (кг / с), Q — охлаждающая нагрузка помещения (кВт), cp — удельная теплоемкость воздуха (кДж / кг.K), а Δt — разница температур между расчетной температурой воздуха и расчетной температурой обратки. Просто отметим, что мы будем использовать стандартную скорость 1,026 кДж / кг.k., а дельта T должна быть меньше 10 * C, поэтому мы будем использовать 8 * c.

Нам известны все значения этого параметра, поэтому мы можем рассчитать массовый расход (сколько килограммов в секунду воздуха необходимо для поступления в комнату). Если мы посмотрим на расчет для помещения 1, то увидим, что он требует 0,26 кг / с. Поэтому мы просто повторяем этот расчет для остальной части комнаты, чтобы найти все массовые расходы.

Расчет массового расхода воздуха для каждой комнаты

Теперь мы можем преобразовать их в объемный расход. Для этого нам нужен определенный объем или плотность воздуха. Мы укажем 21 * c и примем атмосферное давление 101,325 кПа. Мы можем найти это в наших таблицах свойств воздуха, но мне нравится просто использовать онлайн-калькулятор http://bit.ly/2tyT8yp, поскольку он работает быстрее. Таким образом, мы просто добавляем эти числа, и получаем плотность воздуха 1,2 кг / м3.

Вы видите, что плотность измеряется в кг / м3, но нам нужен удельный объем, который составляет м3 / кг, поэтому для преобразования мы просто возьмем обратное, что означает вычисление 1.-1), чтобы получить ответ 0,83 м3 / кг.
Теперь, когда у нас есть, что мы можем рассчитать объемный расход по формуле:

vdot = mdot, умноженное на v.

Рассчитайте объемный расход воздуха на основе массового расхода

, где vdot равно объемному расходу, mdot равно массовому расходу скорость комнаты и v равна удельному объему, который мы только что рассчитали.
Итак, если мы опустим эти значения для помещения 1, мы получим объемный расход 0,2158 м3 / с, то есть количество воздуха, которое необходимо для входа в комнату для удовлетворения охлаждающей нагрузки.Так что просто повторите этот расчет для всех комнат.

Расход воздуха в здании — размер воздуховода

Теперь мы нарисуем наш маршрут воздуховода на плане этажа, чтобы мы могли начать его размер.

Схема воздуховодов

Прежде чем мы продолжим, нам нужно рассмотреть некоторые вещи, которые будут играть большую роль в общей эффективности системы.

Соображения по конструкции

Первый вопрос — форма воздуховода. Воздуховоды бывают круглой, прямоугольной и плоскоовальной формы.Круглый воздуховод — безусловно, самый энергоэффективный тип, и его мы позже будем использовать в нашем рабочем примере. Если мы сравним круглый воздуховод с прямоугольным, мы увидим, что:

Сравнение круглого и прямоугольного воздуховода

Круглый воздуховод с площадью поперечного сечения 0,6 м2 имеет периметр 2,75 м
Прямоугольный воздуховод с равной площадью поперечного сечения имеет периметр 3,87 м
Таким образом, прямоугольный воздуховод требует больше металла для своей конструкции, что увеличивает вес и стоимость конструкции.Более крупный периметр также означает, что больше воздуха будет контактировать с материалом, и это увеличивает трение в системе. Трение в системе означает, что вентилятор должен работать больше, что приводит к более высоким эксплуатационным расходам. По возможности всегда используйте круглый воздуховод, хотя во многих случаях необходимо использовать прямоугольный воздуховод, так как пространство ограничено.

Падение давления в воздуховодах

Второе, что следует учитывать, — это материал, из которого изготовлены воздуховоды, и шероховатость этого материала, поскольку он вызывает трение. Например, если у нас есть два воздуховода с одинаковыми размерами, объемным расходом и скоростью, единственная разница заключается в материале.Один изготовлен из стандартной оцинкованной стали, другой — из стекловолокна, перепад давления на расстоянии 10 м для этого примера составляет около 11 Па для оцинкованной стали и 16 Па для стекловолокна.

Энергоэффективная арматура для воздуховодов

Третье, что мы должны учитывать, — это динамические потери, вызванные арматурой. Мы хотим использовать максимально гладкую арматуру для повышения энергоэффективности. Например, используйте изгибы с длинным радиусом, а не под прямым углом, поскольку резкое изменение направления тратит огромное количество энергии.

Моделирование воздуховодов CFD

Мы можем быстро и легко сравнить характеристики воздуховодов различных конструкций с помощью CFD или вычислительной гидродинамики. Эти симуляции были произведены с использованием революционной облачной инженерной платформы CFD и FEA компанией SimScale, которая любезно спонсировала эту статью.
Вы можете получить доступ к этому программному обеспечению бесплатно, щелкнув здесь, и они предлагают несколько различных типов учетных записей в зависимости от ваших потребностей моделирования.

SimScale не ограничивается только проектированием воздуховодов, он также используется для центров обработки данных, приложений AEC, проектирования электроники, а также термического и структурного анализа.

Просто взгляните на их сайт, и вы можете найти тысячи симуляторов для всего, от зданий, систем отопления, вентиляции и кондиционирования, теплообменников, насосов и клапанов до гоночных автомобилей и самолетов, которые можно скопировать и использовать в качестве шаблонов для вашего собственного дизайна. анализ.

Они также предлагают бесплатные вебинары, курсы и руководства, которые помогут вам настроить и запустить собственное моделирование. Если у вас, как и у меня, есть некоторый опыт создания симуляций CFD, то вы знаете, что этот тип программного обеспечения обычно очень дорогое, и вам также понадобится мощный компьютер для его запуска.

Однако с SimScale все можно сделать из веб-браузера. Поскольку платформа основана на облаке, всю работу выполняют их серверы, и мы можем получить доступ к нашим проектным симуляциям из любого места, что значительно облегчает нашу жизнь как инженеров.

Итак, если вы инженер, дизайнер, архитектор или просто кто-то заинтересован в испытании технологии моделирования, я настоятельно рекомендую вам проверить это программное обеспечение, получить бесплатную учетную запись, перейдя по этой ссылке.

CFD конструкция воздуховодов стандартная и оптимизированная

Теперь, если мы посмотрим на сравнение двух конструкций, мы увидим стандартный дизайн слева и более эффективный дизайн справа, который был оптимизирован с помощью simscale.В обеих конструкциях используется скорость воздуха 5 м / с, цвета представляют скорость: синий означает низкую скорость, а красный — области высокой скорости.

Стандартная конструкция воздуховодов

Из цветовой шкалы скорости и линий тока видно, что в схеме слева входящий воздух прямо ударяет по резким поворотам, присутствующим в системе, что вызывает увеличение статического давления. Резкие повороты вызывают появление большого количества рециркуляционных зон внутри воздуховодов, что препятствует плавному движению воздуха.

Тройник на дальнем конце главного воздуховода заставляет воздух внезапно делиться и менять направление. Здесь наблюдается большой обратный поток, который снова увеличивает статическое давление и уменьшает количество подаваемого воздуха.

Высокая скорость в главном воздуховоде, вызванная резкими поворотами и резкими изгибами, уменьшает поток в 3 ответвления на оставили.

Оптимизированная конструкция воздуховодов с энергоэффективностью

Если теперь мы сосредоточимся на оптимизированной конструкции справа, мы увидим, что используемые фитинги имеют гораздо более гладкий профиль без внезапных препятствий, рециркуляции или обратного потока, что значительно улучшает скорость воздушного потока в системе. В дальнем конце основного воздуховода воздух делится на две ветви через пологую изогнутую тройниковую секцию. Это позволяет воздуху плавно менять направление и, таким образом, не происходит резкого увеличения статического давления, а скорость потока воздуха в комнаты резко увеличивается.

Три ответвления главного воздуховода теперь получают равный воздушный поток, что значительно улучшает конструкцию. Это связано с тем, что дополнительная ветвь теперь питает три меньшие ветви, позволяя некоторой части воздуха плавно отрываться от основного потока и поступать в эти меньшие ветви.

С учетом этих соображений мы можем вернуться к конструкции воздуховода.

Этикетки для воздуховодов и фитингов

Теперь нам нужно пометить каждую секцию воздуховодов, а также фитинги буквой. Обратите внимание, что мы разрабатываем здесь только очень простую систему, поэтому я включил только воздуховоды и базовую арматуру, я не включил такие вещи, как решетки, впускные отверстия, гибкие соединения, противопожарные клапаны и т. Д.

Теперь мы хотим сделать стол с строки, помеченные как в примере. Для каждого воздуховода и фитинга нужен отдельный ряд. Если воздушный поток разделяется, например, в тройнике, тогда нам нужно включить линию для каждого направления, мы увидим это позже в статье.

Просто добавьте буквы в отдельные строки и укажите, какой тип фитинга или воздуховода соответствует.

Схема воздуховода для воздуховодов

Мы можем начать вводить некоторые данные, сначала мы можем включить объемный расход для каждого из ответвлений, это просто, поскольку это просто объемный расход для помещения, которое он обслуживает. Вы можете видеть на диаграмме, которую я заполнил.

Схема воздуховодов Расходы в главном воздуховоде

Затем мы можем начать определять размеры главных воздуховодов. Для этого убедитесь, что вы начали с самого дальнего главного воздуховода.Затем мы просто складываем объемные расходы для всех ответвлений ниже по потоку. Для главного воздуховода G мы просто суммируем ветви L и I. Для D это просто сумма L I и F, а для воздуховода A это сумма L, I, F и C. Поэтому просто введите их в таблицу.

Из чернового чертежа мы измеряем длину каждой секции воздуховода и заносим ее в таблицу.

Размеры воздуховодов — Как определить размеры воздуховодов

Для определения размеров воздуховодов вам понадобится таблица размеров воздуховодов. Вы можете получить их у производителей воздуховодов или в отраслевых организациях, таких как CIBSE и ASHRAE.Если у вас его нет, вы можете найти их по следующим ссылкам. Ссылка 1 и Ссылка 2

Эти диаграммы содержат много информации. Мы можем использовать их, чтобы найти падение давления на метр, скорость воздуха, объемный расход, а также размер воздуховода. Компоновка диаграммы может немного отличаться в зависимости от производителя, но в этом примере вертикальные линии показывают падение давления на метр воздуховода. Горизонтальные линии показывают объемный расход. Диагональные линии, направленные вниз, соответствуют скорости, а диагональные линии вверх — диаметру воздуховода.

Мы начинаем подбирать размеры с первого главного воздуховода, который является участком А. Чтобы ограничить шум в этом разделе, мы укажем, что он может иметь максимальную скорость только 5 м / с. Мы знаем, что для этого воздуховода также требуется объемный расход 0,79 м3 / с, поэтому мы можем использовать скорость и объемный расход, чтобы найти недостающие данные.

Пример выбора размера воздуховода

Возьмем диаграмму и прокрутим ее снизу слева, пока не достигнем объемного расхода 0,79 м3 / с. Затем мы определяем точку, где линия скорости составляет 5 м / с, и проводим линию поперек, пока не достигнем ее.Затем, чтобы найти перепад давления, мы проводим вертикальную линию вниз от этого пересечения. В данном случае мы видим, что он составляет 0,65 Па на метр. Так что добавьте эту цифру в диаграмму. Поскольку мы используем метод равного падения давления, мы можем использовать это падение давления для всех длин воздуховодов, поэтому заполните и их. Затем мы снова прокручиваем вверх и выравниваем наше пересечение с восходящими диагональными линиями, чтобы увидеть, что для этого требуется воздуховод диаметром 0,45 м, поэтому мы также добавляем его в таблицу.

Нам известны объемный расход и падение давления, поэтому теперь мы можем рассчитать значения для секции C, а затем для остальных каналов.

Для остальных воздуховодов мы используем тот же метод.

Подбор размеров воздуховода, метод равного давления

На схеме мы начинаем с рисования линии от 0,65 Па / м на всем протяжении вверх, а затем проводим линию поперек нашего требуемого объемного расхода, в данном случае для секции C нам нужно 0,21 м3 / с . На этом пересечении мы проводим линию, чтобы найти скорость, и мы видим, что она попадает в пределы линий 3 и 4 м / с, поэтому нам нужно оценить значение, в этом случае оно составляет около 3,6 м / с, поэтому мы добавляем что к диаграмме.Затем мы рисуем еще одну линию на другой диагональной сетке, чтобы найти диаметр нашего воздуховода, который в данном случае составляет около 0,27 м, и мы тоже добавим его в таблицу.

Повторяйте этот последний процесс для всех оставшихся воздуховодов и ответвлений, пока таблица не будет заполнена.

Теперь найдите общие потери в воздуховоде для каждого воздуховода и ответвления. Это очень легко сделать, просто умножив длину воздуховода на падение давления на метр. В нашем примере мы обнаружили, что оно составляет 0,65 Па / м. Проделайте это со всеми воздуховодами и ответвлениями на столе.

Подбор размеров фитингов для воздуховодов

Первый фитинг, который мы рассмотрим, это изгиб 90 * между воздуховодами J и L

Для этого мы ищем наш коэффициент потерь для изгиба от производителя или отраслевого органа, вы можете найти, что нажав на эту ссылку.

Коэффициент потери давления в фитинге колена воздуховода

В этом примере мы видим, что коэффициент равен 0,11

Затем нам нужно вычислить динамические потери, вызванные изгибом, изменяющим направление потока. Для этого мы используем формулу Co, умноженную на rho, умноженную на v в квадрате, деленную на 2, где co — наш коэффициент, rho — плотность воздуха, а v — скорость.

Формула потери давления на изгибе воздуховода

Мы уже знаем все эти значения, поэтому, если мы опустим цифры, мы получим ответ 0,718 Па. Так что просто добавьте это в таблицу. (Посмотрите видео внизу страницы, чтобы узнать, как это вычислить).

Падение давления на тройнике в воздуховоде

Следующий фитинг, который мы рассмотрим, — это тройник, который соединяет основной воздуховод с ответвлениями. Мы будем использовать пример тройника с буквой H между G и J в системе. Теперь для этого нам нужно учесть, что воздух движется в двух направлениях: прямо и также сворачивает в ответвление, поэтому нам нужно выполнить расчет для обоих направлений.

Если мы посмотрим на воздух, движущийся по прямой, то сначала мы найдем соотношение скоростей, используя формулу скорости на выходе, деленной на скорость на входе. В этом примере выход воздуха составляет 3,3 м / с, а входящий воздух составляет 4 м / с, что дает us 0,83

Затем мы выполняем еще один расчет, чтобы найти отношение площадей, для этого используется формула: диаметр вне квадрата, деленный на диаметр в квадрате. В этом примере выходной диаметр составляет 0,24 м, а внутренний диаметр — 0,33 м, поэтому, если мы возведем их в квадрат, а затем разделим, мы получим 0. 53

Теперь мы ищем фитинги, которые мы используем, от производителя или отраслевого органа, снова ссылка здесь для этого.

Размер тройника для воздуховода

В руководствах мы находим две таблицы, одна из которых зависит от направления потока. Мы используем прямое направление, поэтому мы определяем ее местоположение и затем просматриваем каждое соотношение, чтобы найти коэффициент потерь. Здесь вы можете увидеть, что оба рассчитанных нами значения попадают между значениями, указанными в таблице, поэтому нам нужно выполнить билинейную интерполяцию. Чтобы сэкономить время, мы просто воспользуемся онлайн-калькулятором, чтобы найти это, ссылка здесь (посмотрите видео, чтобы узнать, как выполнить билинейную интерполяцию).

Мы заполняем наши значения и находим ответ 0,143

Расчет потерь давления в тройнике

Теперь мы рассчитываем динамические потери для прямого пути через тройник, используя формулу co, умноженную на rho, умноженную на v в квадрате, деленную на 2. Если мы опускаем наши значения и получаем ответ в 0,934 паскаля, так что добавьте это в таблицу.

Затем мы можем рассчитать динамические потери для воздуха, который превращается в изгиб. Для этого мы используем те же формулы, что и раньше. Выходная скорость рассчитывается по скорости, чтобы найти наше соотношение скоростей.Затем мы находим отношение площадей, используя формулу: диаметр вне квадрата, деленный на диаметр в квадрате. Мы берем наши значения из нашей таблицы и используем 3,5 м / с, разделенные на 4 м / с, чтобы получить 0,875 для отношения скоростей, и мы используем 0,26 м в квадрате, деленные на 0,33 м в квадрате, чтобы получить 0,62 для отношения площадей.

Изгиб фитинга тройника с потерями

Затем мы используем таблицу изгиба для тройника, опять же между значениями, указанными в таблице, поэтому нам нужно найти числа, используя билинейную интерполяцию. Мы опускаем значения, чтобы получить ответ 0.3645 паскалей. Так что просто добавьте это в таблицу.

Теперь повторите этот расчет для других тройников и фитингов, пока таблица не заполнится.

Нахождение индексного участка — размер воздуховода

Затем нам нужно найти индексный участок, который является участком с наибольшим падением давления. Обычно это самый длинный пробег, но также может быть пробег с наибольшим количеством приспособлений.

Мы легко находим, складывая все потери давления от начала до выхода каждой ветви.

Например, чтобы добраться от A до C, мы теряем 5.04 Па
A (1,3 Па) + B (1,79 Па) + C (1,95 Па)

От A до F мы теряем 8,8 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E ( 2,55 Па) + F (1,95)

От A до I мы теряем 10,56
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H ( 0,36 Па) + I (1,95 Па)

От A до L мы теряем 12,5 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H (0,93 Па) + J (0,65 Па) + K (0,72 Па) + L (1,95 Па)

Следовательно, используемый нами вентилятор должен преодолевать пробег с наибольшими потерями, а именно A — L с 12.5pa, это индексный прогон.

Заслонки воздуховода — балансировка системы

Чтобы сбалансировать систему, нам необходимо добавить заслонки к каждому из ответвлений, чтобы обеспечить равный перепад давления во всем, чтобы достичь проектных расходов в каждой комнате.

Мы можем рассчитать, какой перепад давления должен обеспечивать каждый демпфер, просто вычитая потери в ходе прогона из индекса.

От A до C составляет 12,5 Па — 5,04 Па = 7,46 Па

От A до F составляет 12,5 Па — 8,8 Па = 3,7 Па

От A до I составляет 12.5 Па — 10,56 Па = 1,94 Па

И это наша система воздуховодов. Мы сделаем еще один урок, посвященный дополнительным способам повышения эффективности системы воздуховодов.

Расчет вентиляции «База знаний — ПО Design Master

Расчет вентиляции

30 октября 2018 г., вторник

Существует два разных способа расчета необходимого количества воздуха для вентиляции в зонах: минимальный и ASHRAE 62. 1.

Минимальный расчет — это просто сумма вентиляции, необходимая для всех комнат, составляющих зону.ASHRAE 62.1 рассчитывает более высокий уровень вентиляции на основе различных уровней вентиляции, необходимых для помещений в зоне.

Зона, состоящая из двух комнат, показана ниже. Обе комнаты требуют 500 кубических футов воздуха в минуту для охлаждения. Одной комнате требуется 50 кубических футов в минуту вентиляционного воздуха, а другой — 250 кубических футов в минуту вентиляционного воздуха.

Минимальный метод

При расчете с использованием минимального метода вы получаете 1000 кубических футов в минуту общего приточного воздуха и 300 кубических футов в минуту общего объема вентилируемого воздуха.Устанавливаемая вами система должна обеспечивать 30% наружного воздуха. Вы не можете направить наружный воздух в одну или другую комнату. У каждого из них 30% приточного воздуха будет наружным воздухом, или 150 кубических футов в минуту. В первой комнате 100 кубических футов в минуту дополнительного наружного воздуха, а во второй комнате на 100 кубических футов в минуту слишком мало.

Метод максимума

Простым решением этой проблемы является установка процента вентиляции для системы на максимальную требуемую вентиляцию, в данном случае 50%. Если вы сделаете это, вы получите 500 кубических футов в минуту наружного воздуха.Обе комнаты получают 250 кубических футов в минуту наружного воздуха. Требования ко второму помещению выполнены, но предложение первого помещения превышено на 200 кубических футов в минуту.

ASHRAE 62.1 Метод

Охлаждение наружного воздуха стоит дорого, поэтому вы хотите уменьшить его количество. Это простое решение будет работать, но оно обеспечивает большую вентиляцию, чем требуется. Часть наружного воздуха, поступающего в первую комнату, перейдет во вторую комнату. Расчет ASHRAE 62.1 учитывает это разнообразие и вычисляет число между минимальным и максимальным значениями.

Расчет ASHRAE 62.1 для этой пары помещений показан ниже.

Требуемый согласно ASHRAE 62.1 поток воздуха для вентиляции составляет 375 куб. Футов в минуту, что больше минимального значения 250 кубических футов в минуту и ​​меньше максимального 500 кубических футов в минуту.

Что такое потеря давления?

Сопротивление воздуха в системе вентиляции в основном определяется скоростью воздуха в этой системе. Сопротивление воздуха растет прямо пропорционально потоку воздуха. Это явление известно как потеря давления.Статическое давление, создаваемое вентилятором, вызывает движение воздуха в вентиляционной системе с определенным сопротивлением. Чем выше сопротивление вентиляции в системе, тем меньше воздушный поток вентилятора. Потери на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, глушитель, нагреватель, клапаны и демпферы и т. Д.) Можно рассчитать с помощью таблиц и диаграмм, содержащихся в каталоге. Полная потеря давления равна всем значениям потери давления в вентиляционной системе.

Рекомендуемая скорость движения воздуха внутри воздуховодов:

Тип Скорость воздуха, м / с
Основные воздуховоды 6,0 — 8,0
Боковые ответвления 4,0 — 5,0
Воздуховоды 1,5 — 2,0
Приточная решетка потолочная 1,0 — 3,0
Вытяжные решетки 1,5 — 3,0

Расчет скорости воздуха в воздуховодах:

V = L / (3600 * F) (м / с)

л — объем воздуха [м 3 / час];
F — сечение воздуховода [м 2 ];

Рекомендация 1.
Потери давления в системе воздуховодов могут быть уменьшены за счет большего сечения воздуховода, что обеспечивает относительно равномерную скорость воздуха во всей системе. На рисунке ниже показано, как обеспечить относительно равномерную скорость воздуха в системе воздуховодов с минимальной потерей давления.

Рекомендация 2.
Для длинных систем с большим количеством вентиляционных решеток установите вентилятор посередине сети. Такое решение имеет ряд преимуществ. С одной стороны, снижаются потери давления, с другой — используются воздуховоды меньшего размера.

Пример расчета системы вентиляции:

Начните расчет с черчения системы, показывая расположение воздуховода, вентиляционных решеток, вентиляторов, а также длины участков воздуховода между тройниками. Затем рассчитайте объем воздуха в каждой секции.

Для расчета потери давления в секциях 1-6 используйте диаграмму потери давления для круглых воздуховодов. Для этого необходимо определять требуемые диаметры воздуховодов и потери давления при условии допустимого расхода воздуха в воздуховоде.

Участок 1: расход воздуха 200 м 3 / ч. Предположим, что диаметр воздуховода составляет 200 мм, а скорость воздуха составляет 1,95 м / с, тогда потеря давления составляет 0,21 Па / м x 15 м = 3 Па (см. Диаграмму потери давления для воздуховодов).

Раздел 2: такие же расчеты производятся с учетом того, что скорость воздуха на этом участке составляет 220 + 350 = 570 м 3 / ч. Предположим, что диаметр воздуховода 250 мм, а скорость воздуха 3,23 м / с, тогда потеря давления равна 0.9 Па / м x 20 м = 18 Па.

Участок 3: Расход воздуха через этот участок составляет 1070 м 3 / ч. Предположим, что диаметр воздуховода составляет 315 мм, а скорость воздуха составляет 3,82 м / с, тогда потеря давления составляет 1,1 Па / м x 20 м = 22 Па.

Участок 4: Расход воздуха через этот участок составляет 1570 м 3 / ч. Предположим, что диаметр воздуховода составляет 315 мм, а скорость воздуха составляет 5,6 м / с, тогда потеря давления составляет 2,3 Па / м x 20 м = 46 Па.

Участок 5: Расход воздуха через этот участок составляет 1570 м 3 / ч.Предположим, что диаметр воздуховода 315 мм и скорость воздуха 5,6 м / с, тогда потеря давления составляет 2,3 Па / м x 1 м = 23 Па.

Участок 6: Расход воздуха через этот участок составляет 1570 м 3 / ч. Предположим, что диаметр воздуховода 315 мм, а скорость воздуха 5,6 м / с, тогда потеря давления составляет 2,3 Па / м x 10 м = 23 Па. Общее давление воздуха в системе воздуховодов составляет 114,3 Па.

По окончании расчета потерь давления в последней секции можно приступить к расчету потерь давления в сетевых элементах, таких как глушитель SR 315/900 (16 Па) и в обратном демпфере KOM 315 (22 Па).Рассчитайте также потери давления в ответвлениях к решеткам. Суммарное сопротивление воздуха в 4-х ветвях составляет 8 Па.

Расчет потерь давления в тройниках воздуховодов.

Диаграмма позволяет рассчитать потерю давления в ответвлениях на основе угла изгиба, диаметра воздуховода и производительности по воздуху.

Пример. Рассчитайте потерю давления для колена 90 °, Ø 250 мм и расхода воздуха 500 м. 3 / ч. Для этого найдите точку пересечения вертикальной линии, показывающей объем воздуха, с вертикальной линией.Найдите потерю давления на вертикальной линии слева для изгиба трубы на 90 °, что составляет 2 Па.

Допустим, мы устанавливаем диффузоры потолочные PF с сопротивлением воздуха 26 Па.

Теперь просуммируем все потери давления для прямого участка воздуховода, элементов сети, колен и решеток. Целевое значение 186,3 Па.

После всех расчетов приходим к выводу, что нам нужен вытяжной вентилятор производительностью 1570 м 3 3 / ч при сопротивлении воздуха 186.3 Па. По всем необходимым параметрам работы вентилятор ВЕНТС ВКМС 315 — лучшее решение.

Расчет потерь давления в воздуховодах

Расчет падения давления в обратном клапане

Выбор вентилятора

Расчет потери давления в глушителях

Расчет потерь давления в воздуховоде Тройники

Расчет потери давления в воздуховодных диффузорах

Расчет вентиляции: 4 шага к процедуре вентиляции

Нам нужно дышать чистым воздухом, чтобы оставаться здоровыми.Поскольку мы проводим большую часть времени в закрытых зданиях, правильная вентиляция имеет решающее значение. В связи с этим может возникнуть вопрос, как спроектировать эффективную систему вентиляции. С другой стороны, дизайн вентиляции напрямую связан со счетами за электроэнергию. Таким образом, возрастает важность уделять этому больше внимания.

Пора уделить больше внимания дизайну вентиляции. Здесь у нас есть некоторые соображения, которые следует иметь в виду.

Проектирование вентиляции и расчет размеров воздуховодов с помощью инженерных программ (код: h4space.com.au )

4 шага по проектированию вентиляции

В этой части мы поможем вам спроектировать вентиляционную систему всего за четыре шага:

Шаг 1. Выберите, где вы хотите вентилировать

Решите, какие места в вашем здании нуждаются в вентиляции. Обычно эти зоны в доме включают гостиную, черновой пол и крышу.

Предположим, вы собираетесь разработать эффективную систему вентиляции и сделать воздуховод более эффективным.В этом случае следует проветрить кровельное пространство, чтобы снизить температуру. В жаркие дни ваша крыша может нагреваться, как печь, и направлять кондиционированный воздух через тепло в дом. Таким образом, температура воздуха повысится, прежде чем достигнет вашего жилого помещения.

Кроме того, вы можете установить вентилятор для всего дома, чтобы не полагаться на кондиционеры. Вентилятор для всего дома непрерывно отводит тепло из жилого помещения и крыши днем ​​и ночью. Он помогает регулировать температуру в доме и предотвращать сильную жару или холод в течение года.

Кроме того, еще одна проблема, на которую следует обратить внимание при проектировании вентиляции для охлаждения дома, — это влажность внутри помещения. При использовании кондиционера в под полом может подниматься сырость. Таким образом, влагу из чернового пола необходимо удалять с помощью системы вентиляции, чтобы снизить риск повреждения конструкции и других возможных рисков.

Шаг 2: Определите оборудование, которое может вам понадобиться при проектировании вентиляции
  • Под крышей : Вентилятор на крыше необходим.Здесь вы можете выбрать механическую вентиляцию или естественную ветровую систему. Умные вентиляционные отверстия работают в 6 раз лучше, чем ветряные.
  • Черновой пол : в этой ситуации необходим черный пол. Может быть полезна двойная система, одна для отвода горячего влажного воздуха, а другая для подачи свежего сухого воздуха.

Схема системы вентиляции пола (Ссылка: roofventilationblog.com.au )

  • Жилая площадь : здесь нужен общедомовой вентилятор.Предположим, вы проветриваете определенную комнату, например ванную комнату или прачечную. В этом случае можно использовать кровельный вентилятор с воздуховодами и потолочными решетками. Однако, если вы проветриваете влажное помещение, такое как ванная комната или прачечная, вы должны выводить эти помещения прямо наружу, то есть не в пространство на крыше.

Шаг 3: Подсчитайте, сколько вентиляционных отверстий вам нужно.

Следует определить количество вентиляционных отверстий, которые можно использовать при проектировании вентиляции. Грубо говоря, можно сказать:

  • На каждые 87 м площади 2 требуется 1 интеллектуальное вентиляционное отверстие или 1-2 ветряных вентиляционных отверстия для вентиляции кровельного пространства.
  • Для вентиляции кровли и жилого помещения площадью до 150 м 2 нужна 1 целая система вентиляции.
  • Для вентиляции черного пола необходимы 2 вентилятора черного пола.

Эти факторы можно приблизительно учесть при проектировании вентиляции. Однако, чтобы получить надлежащий, эффективный дизайн с точным количеством компонентов, вам следует обратиться к одному специалисту в этой области.

Шаг 4. Обратите внимание на расход подпиточного воздуха

убедитесь, что в вентилируемую зону поступает достаточно свежего воздуха.Чтобы оптимизировать конструкцию вентиляции, вы должны предусмотреть вход для холодного свежего воздуха, поступающего снаружи, так называемого свежего воздуха. Необходимо удалить загрязненный воздух и заменить его вентилируемым. В связи с этим следует обратить внимание на следующие подсказки в конструкции вентиляции:

  • В свесе крыши можно установить вентиляционные отверстия для подачи подпиточного воздуха в пространство крыши.
  • В жилом помещении можно подготовить свежий воздух, просто открыв окна.
  • Для чернового пола необходима двойная система вентиляции для создания достаточного количества подпиточного воздуха. Таким образом, будет установлено одно вентиляционное отверстие для втягивания наружного воздуха во внутреннее пространство.

Методика проектирования вентиляции

При проектировании вентиляции можно использовать процедуру, указанную ниже:

  1. Рассчитайте тепловую или охлаждающую нагрузку, включая явное и скрытое тепло.
  2. Рассчитайте количество воздухообменов с учетом количества и активности живых людей.
  3. Расчет температуры поступающего воздуха
  4. Рассчитайте массу воздуха, которая должна циркулировать в зоне
  5. Рассчитайте количество энергии и температуры в оборудовании и воздуховодах.
  6. Рассчитайте свойства, которые могут быть достигнуты на выходе таких компонентов, как нагреватели, омыватели, увлажнители, охладители и т. Д.
  7. Рассчитайте размер бойлера или каменки.
  8. Расчет и определение размеров системы воздуховодов

Теперь каждый процесс проектирования вентиляции будет проработан более подробно.

1. Расчет тепловой нагрузки и охлаждения:

В этой части вам необходимо рассчитать нагрузки на отопление и охлаждение в помещении в дополнение к окружающим нагрузкам, чтобы получить точные нагрузки, которые вам нужно придумать для вентиляции помещения.

2. Количество воздухообменников

На основании количества людей, находящихся в помещении, времени и вида деятельности, которую они могут проводить в этом районе, вы можете определить, сколько загрязняющих веществ там выбрасывается. Таким образом, можно рассчитать приток свежего воздуха, который необходимо обеспечить за счет конструкции вентиляции.Затем вы можете рассчитать критические воздушные сдвиги, чтобы обеспечить доступность здорового воздуха.

3. Температура подаваемого воздуха

Существует несколько стандартных рекомендаций для расчета температуры приточного воздуха. Одно из которых здесь написано:

  • Температура от 38 до 50 градусов Цельсия (100-120 o F) подходит для обогрева помещения.
  • Когда вы собираетесь охладить зону, где зона находится рядом с впускными отверстиями, температура на впуске должна быть отрегулирована на 6-8 o C ниже температуры зоны.
  • Для охлаждения с помощью высокоскоростных диффузных форсунок температура воздуха на входе должна быть установлена ​​на 17 o C ниже комнатной температуры.

4. Количество воздуха

Если мы собираемся обогревать комнату, выражение, из которого вы можете найти объем воздуха, будет

q h = Q h / (ρ c p (T s — T r ))

где

q час = объем воздуха для отопления (м 3 / с)

Q ч = тепловая нагрузка (Вт)

ρ = плотность воздуха (кг / м 3 )

c p = удельная теплоемкость воздуха (Дж / кг · К)

T с = температура подачи ( o C )

T r = комнатная температура ( o C )

Для расчета охлаждающей нагрузки имеем:

q c = Q c / (ρ c p (T o — T r ))

в котором

q c = объем воздуха для отопления (м 3 / с)

Q c = тепловая нагрузка (Вт)

ρ = плотность воздуха (кг / м 3 )

c p = удельная теплоемкость воздуха (Дж / кг · К)

T o = Наружная температура ( o C )

T r = комнатная температура ( o C )

5. Потери температуры в воздуховодах

Еще один параметр в конструкции вентиляции — потеря температуры в воздуховодах. Количество потерь тепла из воздуховода рассчитывается на основе стенок воздуховода, начальной и конечной температуры в воздуховоде, температуры вокруг воздуховода и коэффициента теплопотерь. Коэффициент теплопотери у каждого вещества разный. Например, она составляет 5,68 Вт / м 2 K для воздуховодов из листового металла и 2,3 Вт / м 2 K для изолированных воздуховодов. Уравнение, по которому рассчитываются потери тепла в воздуховоде, составляет

.

H = k A ((T 1 + T 2 ) / 2 — T r )

где

H = тепловые потери (Вт),

A = площадь стенок воздуховода (м 2 ),

T 1 = начальная температура в воздуховоде ( o C),

T 2 = конечная температура в воздуховоде ( o C),

и

T r = температура окружающей среды ( o C).

После определения потерь тепла, потери тепла воздухом можно найти из

H = 1000 q c p (T 1 — T 2 )

где

q = масса проходящего воздуха (кг / с)

и

c p = удельная теплоемкость воздуха (кДж / кг · K).

Итак, потеря температуры в воздуховодах определяется комбинацией приведенных выше уравнений.

6. Выбор нагревателя, охладителя, стиральной машины и увлажнителя

При расчетном дизайне необходимо выбрать соответствующее оборудование в зависимости от количества воздуха и мощности нагрева или охлаждения. Для выбора этих агрегатов вам следует искать их в каталогах производителей.

7. Расчет мощности котла

В зависимости от нагрузки, рассчитанной при расчете нагрузки на охлаждение и обогрев, мы можем рассчитать котел; но имейте в виду, что к расчетной нагрузке следует прибавить запас от 10 до 20%, чтобы точно определить размер котла. Это означает:

B = Q (1 + x)

где

B = мощность котла (кВт),

Q = общая тепловая нагрузка всех нагревательных блоков в системе (кВт),

x = запас на нагрев системы, обычно используются значения от 0,1 до 0,2.

Наконец, подходящий котел с соответствующей мощностью можно выбрать из производственного каталога.

8. Размер воздуховода

Чтобы определить размер воздуховода в конструкции вентиляции, первым делом необходимо определить скорость воздуха в нем.Затем необходимо рассчитать общую потерю давления в воздуховодах. Эти потери давления состоят из большой потери давления, незначительной потери давления и незначительных потерь в фильтрах, нагревателях и других компонентах. Большая потеря давления в воздуховодах

dp f = R l ,

где

R = сопротивление трению воздуховода на единицу длины (Па, Н / м2 на м воздуховода)

и

l = длина воздуховода (м).

С учетом указанных соотношений гидравлический диаметр воздуховода может быть рассчитан по следующей формуле

R = f / d h (ρ v 2 /2)

где

f = коэффициент трения,

d h = гидравлический диаметр.

Чтобы узнать больше о размерах воздуховодов при проектировании вентиляции, щелкните здесь.

Образец конструкции воздуховода в здании (Ссылка: energy-models.com )

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *