Содержание

где проходят, разница температур между ними, давление на радиаторах

От того, насколько эффективно налажена работа системы отопления в доме, будет зависеть комфорт семьи в зимний период. Если батареи нагреваются плохо, необходимо устранить неисправность, а для этого важно знать, как устроено отопление в целом.

Водяной обогрев пространства представляет собой источник тепла и теплоноситель, который разносится по батареям. Подача и обратка присутствует в одно- и двухтрубной системах. Во второй, чёткого распределения нет, трубу условно принято делить пополам.

Особенности подачи в системе отопления

Подача тепла идёт сразу от котла, жидкость при этом разносится по батареям от основного элемента — котла (или же центральной системы). Она характерна для однотрубной системы. Если её усовершенствовать, то возможна врезка труб ещё и на обратку.

Фото 1. Схема отопления для частного двухэтажного дома с указанием труб подачи и обратки.

Где проходит обратка

Если говорить кратко, то схема обогрева состоит из нескольких важных элементов: отопительный котёл, батареи и расширительный бак. Чтобы тепло поступало по радиаторам, необходим теплоноситель: вода или антифриз. При грамотном построении схемы, теплоноситель нагревается в котле, поднимается по трубам, увеличивая свой объём, а все излишки при этом попадают в расширительный бак.

Исходя из того, что батареи наполнены жидкостью, горячая вода вытесняет холодную, та, в свою очередь, попадает еще раз в котёл для последующего нагрева. Постепенно градус воды увеличивается и достигает нужной температуры. Циркуляция теплоносителя при этом может быть естественной или гравитационной, осуществляемой при помощи насосов.

Исходя из этого, обраткой можно считать теплоноситель, который прошёл весь контур, отдавая тепло, и уже охлаждённый снова попал в котёл для последующего нагрева.

Отличия между ними

Разница между описанными понятиями состоит в следующем:

  • Подача представляет собой теплоноситель, который идёт по радиаторам от источника тепла.
  • Обратка — жидкость, которая прошла всю схему, и остыв снова попала к источнику тепла для последующего нагрева. Следовательно, происходит на выходе.
  • Отличие в температуре: обратка холоднее.
  • Отличие в установке. Водовод, который прикреплён к верхней части батареи, является подачей. То, что крепится к низу — обратка.

Важно! Необходимо соблюдать некоторые советы. Вся система должна быть полностью заполнена водой или антифризом. Поддерживать скорость движения жидкости, её циркуляцию и давление не менее важно.

Разница температур на радиаторах

Разница температур должна составлять 30 °C. При этом на ощупь батареи будут примерно одинаковыми. Важно следить, чтобы перепад этих значений не был слишком большим.

Фото 2. Схема отопления для 6 радиаторов: указаны изменения температуры подачи и обратки на каждом из них.

Полезное видео

В видео рассматривается вопрос: где лучше поставить циркуляционный насос, на подаче или обратке?

Итоги сравнения

Подводя итоги, становится понятно, что однотрубная система разводки с обраткой имеет наибольшую перспективу, особенно для многоэтажных домов. Простота монтажа, низкая стоимость и небольшое количество коммуникаций всё-таки имеют преимущество перед двухтрубной с подачей.

Однако не стоит забывать, что с помощью двухтрубной схемы, возможно

регулировать температуру нагрева для каждого прибора по отдельности.

Какое давление в системе отопления многоэтажного дома должно быть

Давление, которое должно быть в системе отопления многоквартирного дома, регламентируется СНиПами и установленными нормами. При расчете берут во внимание диаметр труб, типы трубопровода и отопительных приборов, расстояние до котельной, этажность.

Виды давления

Говоря о давлении в системе отопления, подразумевают 3 его вида:

  1. Статическое (манометрическое). При выполнении расчетов его принимают равным 1атм или 0,1 МПа на 10 м.
  2. Динамическое, возникающее при включении в работу циркуляционного насоса.
  3. Допустимое рабочее, представляющее собой сумму двух предыдущих.

В первом случае это сила давления теплоносителя в радиаторах, запорной арматуре, трубах. Чем выше этажность дома, тем большее значение приобретает этот показатель. Чтобы преодолеть подъем столба воды применяют мощные насосы.

Второй случай — это давление, возникающее в процессе движения жидкости в системе. А от их суммы — максимального рабочего давления, зависит работа системы в безопасном режиме. В многоэтажном доме его величина достигает 1 МПа.

Требования ГОСТ и СНиП

В современных многоэтажных домах монтаж системы отопления осуществляют, опираясь на требования ГОСТа и СНиП.

В нормативной документации оговорен диапазон температур, которые центральное отопление должно обеспечить. Это от 20 до 22 градусов С при параметрах влажности от 45 до 30%.

Чтобы достичь этих показателей, необходим просчет всех нюансов в работе системы еще при разработке проекта. Задача теплотехника — обеспечить минимальную разность значений давления жидкости, циркулирующей в трубах, между нижними и последними этажами дома, сократив тем самым теплопотери.

ЭтажностьРабочее давление, атм
До 5 этажей2-4
9-10 этажей5-7
             От 10 и выше12

На реальную величину давления влияют следующие факторы:

  • Состояние и мощность оборудования, подающего теплоноситель.
  • Диаметр труб, по которым теплоноситель циркулирует в квартире. Бывает, что желая повысить температурные показатели, хозяева сами меняют их диаметр в большую сторону, снижая общее значение давления.
  • Расположение конкретной квартиры. В идеале это не должно иметь значения, но в действительности существует зависимость от этажа, и от удаленности от стояка.
  • Степень износа трубопровода и нагревательных приборов. При наличии старых батарей и труб не следует ожидать, что показатели давления останутся в норме. Лучше предупредить возникновение нештатных ситуаций, заменив отслужившую свое теплотехнику.
Как меняется давление от температуры

Проверяют рабочее давление в высотном доме при помощи трубчатых деформационных манометров. Если при проектировании системы конструкторы заложили автоматическую регулировку давления и его контроль, то дополнительно устанавливают датчики разных типов. В соответствии с требованиями, прописанными в нормативных документах, контроль осуществляют на наиболее ответственных участках:

  • на подаче теплоносителя от источника и на выходе;
  • перед насосом, фильтрами, регуляторами давления, грязевиками и после этих элементов;
  • на выходе трубопровода из котельной или ТЭЦ, а также на вводе его в дом.

Обратите внимание: 10% разницы между нормативным рабочим давлением на 1 и 9 этаже — это нормально.

Давление в летний период

В период, когда отопление бездействует как в теплосети, так и в системах отопления поддерживается давление, величина которого превышает статическое. В противном случае в систему попадет воздух и трубы начнут коррозировать.

Минимальное значение этого параметра определяется высотой здания плюс запас от 3 до 5 м.

Как поднять давление

Проверки давления в отопительных магистралях многоэтажных домов нужны обязательно. Они позволяют анализировать функциональность системы. Падение уровня давления даже на незначительную величину, может стать причиной серьезных сбоев.

При наличии централизованного отопления систему чаще всего испытывают холодной водой. Падение давления за 0,5 часа на величину большую, чем 0,06 МПа указывает на наличие порыва. Если этого не наблюдается, то система готова к работе.

Непосредственно перед стартом отопительного сезона выполняют проверку водой горячей, подаваемой под максимальным давлением.

Изменения, происходящие в системе отопления многоэтажного дома, чаще всего не зависят от хозяина квартиры. Пытаться повлиять на давление — затея бессмысленная. Единственное, что можно сделать, устранить воздушные пробки, появившиеся из-за неплотных соединений или неправильно выполненной регулировки клапана спуска воздуха.

На наличие проблемы указывает характерный шум в системе. Для отопительных приборов и труб это явление очень опасно:

  • Расслаблением резьбы и разрушениями сварных соединений во время вибрации трубопровода.
  • Прекращением подачи теплоносителя в отдельные стояки или батареи в связи со сложностями с развоздушиванием системы, невозможностью регулировки, что может привести к ее размораживанию.
  • Понижением эффективности системы, если теплоноситель прекращает движение не полностью.

Чтобы предотвратить попадание воздуха в систему необходимо перед ее испытанием в рамках подготовки к отопительному сезону осмотреть все соединения, краны на предмет пропускания воды. Если услышите характерное шипение при пробном запуске системы, немедленно ищите утечку и устраняйте ее.

Можно нанести на стыки мыльный раствор и там, где герметичность нарушена, будут появляться пузырьки.

Иногда давление падает и после замены старых батарей на новые алюминиевые. На поверхности этого металла от контакта с водой появляется тонкая пленка. Побочным продуктом реакции является водород, за счет его сжимания давление снижается.

Вмешиваться в работу системы в этом случае не стоит — проблема носит временный характер и со временем уходит сама по себе. Это происходит исключительно в первое время после монтажа радиаторов.

Повысить напор на верхних этажах высотного здания можно путем установки циркуляционного насоса.

Внимание: самой удаленной точкой трубопровода является угловая комната, следовательно, давление здесь самое меньшее.

Минимальное давление

Из условия, когда перегретая вода в системе отопления не вскипает, принимается минимальное давление.

Температура воды,

градусов С

Минимальное давление ,

атм

1301,8
1402,7
1503,9

Определить его можно следующим образом:

К высоте дома (геодезической) добавляют запас приблизительно 5 м, чтобы избежать завоздушивания, плюс еще 3 м на сопротивление системы отопления внутри дома. Если на подаче давление недостаточное, то батареи на верхних этажах останутся непрогретыми.

Если взять 5-этажный дом, то на подаче минимальное давление должно иметь значение:

5х3+5+3=23 м = 2,3 ата = 0,23 Мпа

Перепад давления

Чтобы отопительная система нормально выполняла свои функции, перепад давлений, представляющий собой разность между его величинами на подаче и обратке, должен быть определенной и постоянной величины. В числовом выражении он должен быть в пределах от 0,1 до 0,2 МПа.

Отклонение параметра в меньшую сторону свидетельствует о сбое в циркуляции теплоносителя по трубам. Колебание в сторону увеличения показателя — о завоздушивании отопительной системы.

В любом случае нужно искать причину изменения, иначе отдельные элементы могут выйти со строя.

Если давление упало, то проверяют на наличие утечек: отключают насос и наблюдают изменения статического давления. Если оно продолжает снижаться, то ищут место повреждения путем последовательного выведения из схемы разных участков.

В случае, когда статический напор не меняется, то причина кроется в неисправности оборудования.

Стабильность перепада рабочего давления изначально зависит от проектировщиков, от выполненных ими расчетов по гидравлике, а затем правильного монтажа магистрали. Нормально функционирует отопления многоэтажки, при монтаже которого учтены следующие моменты:

  • Подающий трубопровод, за редким исключением, находится вверху, обратный внизу.
  • Разливы выполнены из труб сечение от 50 до 80 мм, а стояки и подвод к батареям — от 20 до 25 мм.
  • В отопительную систему в байпасную линию насоса или перемычку, соединяющую подачу и обратку врезаны регуляторы, гарантирующие, что даже при резких перепадах давления завоздушивание не появится.
  • В схеме теплоснабжения присутствует запорная арматура.

Идеальных условий эксплуатации отопительной системы не существует. Всегда есть потери, снижающие показатели давления, но все же они не должны выходить за пределы регламентированными Строительными нормами и правилами РФ СНиП 41-01-2003.

Большая разница температуры между подачей и обраткой

Оптимальная разница температуры между подачей и обраткой. Изменения в конструкции обогрева


Постепенно температура теплоносителя увеличивается до необходимой, нагревая радиаторы.

Циркуляция жидкости может быть естественной, называемой гравитационной, и принудительной – с помощью насоса.Обратка – это теплоноситель, который, пройдя через все отопительные приборы, входящие в контур, отдает свое тепло и, охлажденный, поступает снова в котел для очередного подогрева. Батареи можно подключить тремя способами:

  • 2. Диагональное подключение.
  • 3. Боковое подключение.
  • 1. Нижнее подключение.

При первом способе подвод теплоносителя и отвод обратки осуществляется в нижней части батареи.

Подача и обратка в системе отопления

Двухтрубная система более продумана – параллельно подключены две трубы (подача и обратка).

Для того, чтобы продлить срок службы котла, систему отопления стараются изначально продумать так, чтобы «роса» не выпадала, т.е. стараются снизить разницу температур между двумя трубами. Чаще всего, этого добиваются включением бойлера горячего водоснабжения в систему отопления или подогревом теплоносителя обратки.

Бойлер устанавливают рядом с котлом.

Оптимальная разница температуры между подачей и обраткой.

Нормы и оптимальные значения температуры теплоносителя

При нагреве свыше 90 °С начинают разлагаться пыль и лакокрасочное покрытие.

По этим причинам санитарные нормы запрещают осуществлять больший нагрев.

Для расчета оптимальных показателей могут быть использованы специальные графики и таблицы, в которых определены нормы в зависимости от сезона:

  1. При -40 °С за окном для всех приборов отопления ставят максимально допустимые значения. На подаче это – от 95 до 105 °С, а на обратке – 70 °С.
  2. При среднем показателе за окном 0 °С подача для радиаторов с различной разводкой устанавливается на уровне от 40 до 45 °С, а температура обратки – от 35 до 38 °С;
  3. При -20 °С на подачу осуществляется нагрев от 67 до 77 °С, а норма обратки при этом должна быть от 53 до 55 °С;

h3_2 Автономное отопление помогает избегать многих проблем, которые возникают с централизованной сетью, а оптимальная температура теплоносителя может регулироваться в соответствии к сезону.

Оптимальная разница температуры между подачей и обраткой. Защита котла от холодной обратки

При нагреве свыше 90 °С начинают разлагаться пыль и лакокрасочное покрытие.

По этим причинам санитарные нормы запрещают осуществлять больший нагрев. Для расчета оптимальных показателей могут быть использованы специальные графики и таблицы, в которых определены нормы в зависимости от сезона:

  1. При -40 °С за окном для всех приборов отопления ставят максимально допустимые значения. На подаче это – от 95 до 105 °С, а на обратке – 70 °С.
  2. При -20 °С на подачу осуществляется нагрев от 67 до 77 °С, а норма обратки при этом должна быть от 53 до 55 °С;
  3. При среднем показателе за окном 0 °С подача для радиаторов с различной разводкой устанавливается на уровне от 40 до 45 °С, а температура обратки – от 35 до 38 °С;

h3_2 Автономное отопление помогает избегать многих проблем, которые возникают с централизованной сетью, а оптимальная температура теплоносителя может регулироваться в соответствии к сезону.

Норматив разницы температуры в подаче и обратке.

В чем разница между подачей и обраткой отопления

Также должна быть установлена по правилам максимальная температура в системе отопления во избежание дальнейших неисправностей. Радиаторы к системе отопления подключают одним из трех способов: нижним, боковым или диагональным. Также нижнее подключение еще называют по-разному: « », седельное.

По такой схеме обратка и подвод устанавливаются в нижней части батареи.

В большинстве случаев ее применяют, когда трубы проложены под плинтусом либо под поверхностью пола.

Подачу воды в качестве теплового носителя осуществляют в верхней части, а обратка подключается снизу, чтобы температура обратки в системе отопления считалась равнозначной.

Температура обратки в системе отопления.

В чем разница между подачей и обраткой отопления

Подача носителя тепла регулируется вводными задвижками, после которых вода попадает в грязевики, а оттуда раздается по стоякам, а с них подаётся в батареи и радиаторы, обогревающие жильё.Количество задвижек коррелирует с количеством стояков. При выполнении ремонтных работ в отдельно взятой квартире существует возможность отключения одной вертикали, а не всего дома.Отработавшая жидкость частично уходит по обратной трубе, а частично подаётся в сеть горячего водоснабжения.Воду для обогревательной конфигурации готовят на ТЭЦ или в котельной.

Нормы температуры воды в системе отопления прописаны в строительных правилах: компонент должен быть разогрет до 130-150 °С.Подачи рассчитывается с учетом параметров наружного воздуха.

Так, для региона Южный Урал принимается к расчету минус 32 градуса.Чтобы жидкость не закипела, её надо в сеть подавать под давлением 6-10 кгс.

Но это теория. Фактически большинство

Как понизить температуру обратки в системе отопления. В чем разница между подачей и обраткой отопления

Подача носителя тепла регулируется вводными задвижками, после которых вода попадает в грязевики, а оттуда раздается по стоякам, а с них подаётся в батареи и радиаторы, обогревающие жильё.Количество задвижек коррелирует с количеством стояков.

При выполнении ремонтных работ в отдельно взятой квартире существует возможность отключения одной вертикали, а не всего дома.Отработавшая жидкость частично уходит по обратной трубе, а частично подаётся в сеть горячего водоснабжения.Воду для обогревательной конфигурации готовят на ТЭЦ или в котельной. Нормы температуры воды в системе отопления прописаны в строительных правилах: компонент должен быть разогрет до 130-150 °С.Подачи рассчитывается с учетом параметров наружного воздуха.

Так, для региона Южный Урал принимается к расчету минус 32 градуса.Чтобы жидкость не закипела, её надо в сеть подавать под давлением 6-10 кгс.

Но это теория. Фактически большинство

Часто задаваемые вопросы

При образовании нагара ухудшается теплопередача и повышается температура дымовых газов.

Если при той же вырабатываемой мощности котла температура дымовых газов увеличилась, значит необходимо уменьшить время между чистками. По окончании отопительного сезона перед полным выключением котла рекомендуется с пульта включить чистку теплообменника в ручном режиме.Генератор выбирается в зависимости от типа циркуляционного насоса: если насос однофазный, то и генератор можно однофазный.

Допустимая разница температур между подачей и обраткой.

Обратка батареи отопления холодная – устройство, причины, способы устранения

Так же имеют высокую безопасность эксплуатации, продуктивность и оптимальное использование всего оборудования в целом. Затем теплоноситель, то есть вода или антифриз, пройдя по всем имеющимся радиаторам, теряет свою температуру и подается обратно для нагрева.

Самая незамысловатая структура отопления представляет собой нагреватель, две магистрали, расширительный бак и набор радиаторов.

Сантехнический вопрос. точнее отопительный. Для знающих. :)) Какая, именно по вашему мнению, лучше разница температур между подачей и обраткой?
Говорим про индивидуальные системы отопления.
10 или 20 градусов.
Понятно, что при 10-ти ументшается расход энергии, расходуемой котлом на нагрев.. вроде экономия.. Но так же при этиом увеличивается подача насоса, а значит снижается напор, и как следствие уменьшается производительность (фактически мощность) насоса.
При 20-ти значительно уменьшается подача, а соответственно увеличивается напор, что ведет к увеличению производительности насоса и системы, но ведет к бОльшим затратам энергии на котле на нагрев.

Так вот, что по вашему мнению все же предпочтительней, насос большей производительности, но меньше затрат на нагрев теплоносителя, или насос меньшей производительности, но больше затрат на нагрев?

Золотую середину тут не придумать, так что о ней не говорим. :)))
О золотой середине не говорим. 8 лет Еще раз. Ни о каких датчиках не говорим.. . Это совсем другая тема.. . И уточню.. . я не ломаю голову.. . Мне интересно мнение дргух по этому вопросу.. . Дополнен 8 лет назад

Надёжность и производительность отопительной системы зависит от эффективной работы всех частей, входящих в неё.

К ним относятся: котёл для подогрева теплоносителя, определённым образом подсоединённые к нему и между собой радиаторы, расширительный бак, циркуляционный насос, запорная и регулирующая арматура, трубопровод необходимого диаметра.

Создание высокоэффективной системы отопления возможно, благодаря специальным знаниям и опыту в этой сфере деятельности. Немаловажную роль в рабочем процессе отопления помещения играет трубопровод обратки.

Обратка в системе отопления, что это такое

Обратка представляет собой часть трубопровода контура отопления, осуществляющая передачу охлаждённого теплоносителя, после его прохождения по системе через подключённые радиаторы, в котёл для повышения температуры. Теплоносителем в основном является вода, иногда антифриз.

Фото 1. Схема отопления с использованием твердотопливного котла. Обратка обозначена синим цветом.

Виды отопительных схем

Для многоэтажных зданий часто применяют однотрубную прямую систему разводки. Она не имеет чёткого разделения труб на подвод жидкости в радиаторы и обратку, поэтому полный контур условно делят на две равные части. Стояк, выходящий из котла, называют подача, а трубы, выходящие из последнего радиатора — обраткой. Преимущества этой схемы:

  • экономия времени и материальных затрат;
  • удобство и простота монтажных работ;
  • эстетичный вид;
  • отсутствие стояка обратки и последовательное расположение радиаторов (теплоноситель подаётся на 1-й, затем 2-й, 3-й и так далее).

Для однотрубной системы распространена вертикальная разводка с вертикальным контуром и подводом тепла сверху.

При двухтрубной системе разводки подразумевается установка двух замкнутых, параллельно подключённых, контуров, один из них обеспечивает функцию подвода теплоносителя к отопительному прибору (радиатору), второй — функцию его отвода (обратка).

Радиаторы подключаются несколькими способами:

  • Нижний (или седельный, серповидный). Предусматривает подключение подвода и обратки к нижним соединительным отверстиям радиатора. На верхние отверстия устанавливают кран Маевского и заглушку. Применяют для систем, в которых трубы скрыты под полом или плинтусом. Целесообразны для многосекционных радиаторов, при небольшом числе секций потери тепла доходят до 15%.
  • Боковой способ, пользуется популярностью. Трубы подсоединяют к радиатору с одной стороны: подвод теплоносителя через верх, обратку — через низ. Не подходит для приборов с большим числом секций.

Фото 2. Двухтрубная схема отопления с боковым типом подключения. Указана температура подачи и обратки.

  • Диагональный (или боковой перекрёстный) способ подразумевает подачу горячей воды сверху, подключение обратки — снизу и с другой стороны. Подходит для радиаторов с числом секций не менее 14 шт.
  • Третьим вариантом организации схемы отопления является гибридный способ, основанный на одновременном использовании однотрубной и двухтрубной систем. Например, коллекторная схема предполагает подачу теплоносителя через одиночный стояк, дальнейшая разводка на месте осуществляется по индивидуальному плану.

Принцип работы, как повысить производительность

Одиночный контур не обеспечивает равномерного прогревания отопительных приборов, теплоотдача уменьшается по мере удаления от котла (в последние радиаторы поступает теплоноситель холоднее, чем на первые). Недостаток подобной системы — большие значения давления теплоносителя.

Справка. производительность однотрубной системы повышается при наличии циркулярного насоса или байпасов, сформированных на каждом этаже.

Преимущества двухтрубного варианта отопления:

  • прогрев достаточного числа приборов в равной степени, вне зависимости от их расстояния до источника тепла;
  • корректирование температурного режима, проведение ремонтных мероприятий на отдельном приборе не оказывает влияние на работу других.

Недостатки:

  • сложность схемы разводки;
  • трудоёмкость установки и подключения.

Оптимальным выбором для частного строительства является самая производительная двухтрубная система, которую также часто выбирают для отопления элитного жилья.

Монтаж двухтрубной системы целесообразно проводить с установкой циркуляционного насоса, который позволяет использовать трубы меньшего диаметра.

После него, с целью предохранения контура рециркуляции от продавливания, ставят обратный клапан.

При монтаже системы без циркулярного насоса соблюдается правило: подача возможна если есть уклон от или к котлу. Теплоноситель с более высокой температурой через подвод (наклон от котла к отопительному прибору) поступает в радиатор и прогревает его, а затем выходит через обратку (наклон от радиатора к котлу), но с уже меньшей температурой. Опытные мастера нередко прибегают к замене рециркуляционного насосного кольца на систему 3-х или 4-х ходовых смесителей.

Важно! При естественной циркуляции, весь трубопровод от стояка к радиаторам не должна иметь большую длину.

Особенности

Продолжительная работа котельного оборудования возможна при правильно спроектированной системе разводки труб, которая обеспечивает определённую разницу температур между трубами, выводящими и подводящими теплоноситель.

Внимание! Наличие существенной разницы температурных значений является причиной образования на камере сгорания обильного конденсата.

Капли воды, особенно в соединении с образующимся при горении оксидом углерода (в случае твердотопливного оборудования), быстро разъедают стенки камеры, нарушается герметичность важного элемента, и котёл выходит из строя.

Приемлемым решением в данной ситуации является подсоединение дополнительного водонагревающего устройства — бойлера. Он устанавливается рядом с котлом специальным образом, чтобы теплоноситель, пройдя по всем приборам системы, попал в него, а затем в котёл.

Фото 3. Система отопления с бойлером для нагрева воды. Прибор установлен рядом с газовым котлом.

Таблица температуры в трубопроводе отопления

Температура отопления, включая трубы обратки, напрямую зависит от показателей уличных термометров. Чем холоднее воздух на улице и выше скорость ветра, тем больше затрат на тепло.

Разработана нормативная таблица, отражающая значения температур на входе, подаче и выходе теплового носителя в системе отопления. Представленные в таблице показатели обеспечивают комфортные условия для человека в жилом помещении:

Темп. внешняя, °С+8+5+1-1-2-5-10-15-20-25-30-35
Темп. на входе424753555658626976839097104
Темп. радиаторов40445051525457647076828894
Темп. обратки34374142434446505458626769

Важно! разница между температурами значениями подачи и обратки зависит от направления движения теплоносителя. Если разводка сверху, перепады составляют не больше 20°С, если снизу — 30°С.

Норма давления

Эффективная передача и равномерное распределение теплоносителя, для производительности всей системы с минимальными потерями тепла возможны при нормальном рабочем давлении в трубных магистралях.

Давление теплоносителя в системе подразделяется по способу действия на в виды:

  • Статическое. Сила воздействия неподвижного теплоносителя на единицу площади.
  • Динамическое. Сила действия при движении.
  • Предельный напор. Соответствует оптимальному значению давления жидкости в трубах и способному поддержать работу всех обогревательных приборов на нормальном уровне.

Согласно СНиП оптимальный показатель равен 8—9,5 атм, снижение давления до 5—5,5 атм. нередко приводит к перебоям отопления.

Для каждого конкретного дома показатель нормального давления индивидуален. На его значение влияют факторы:

  • мощность насосной системы, подающей теплоноситель;
  • диаметр трубопровода;
  • отдалённость помещения от котельного оборудования;
  • износ частей;
  • напор.

Контролировать давление позволяют манометры, монтирующиеся непосредственно в трубопровод.

Почему не работает обратка

Существует множество проблем, связанных с обраткой в отопительной системе.

Передавливает подачу

Температура воды в трубопроводе обратки определяется устройством системы отопления, соответствует значению в графике температур, утверждённому обслуживающей организацией.

Нередко жильцы квартир сталкиваются с проблемой, когда обратка передавливает подачу.

Распространённая причина — переход горячего теплоносителя из магистрали подачи в контур обратки через всевозможные части (например, перемычки) трубопровода горячего водоснабжения или вентиляцию. При автоматическом приборе регулирования, как правило, достаточно его правильно настроить.

Теплоноситель плохо сходит

При нарушении циркуляции жидкости в тепловом контуре, вода в трубах обратки плохо сходит. Первоначально проверяют соответствие мощности циркуляционного насоса требованиям. Причина может скрываться в банальной протечке трубопровода. Ситуация с плохой циркуляцией типична для многоквартирных домов, расположенных на конечном участке теплотрассы с недостаточным перепадом давления.

Обратка холодная, забиты трубы

Низкая температура обратки — серьёзная проблема, мешающая обеспечить комфорт в помещении. Причины холодной обратки:

  • неправильная разводка отопления;
  • воздушный пузырь в системе или стояке;
  • недостаточный расход воды по сети;
  • заниженная температура в подводных трубах;
  • увеличенные объёмы теплопотерь;
  • неэффективность насосного оборудования, результат: слабая циркуляция и недостаточный перепад температур между подачей тепла и обраткой;
  • пониженное давление;
  • забитые трубы и радиаторы.

Применение кранов Маевского позволяет ликвидировать воздушные пробки, препятствующие движению теплоносителя.

Фото 4. Кран Маевского, установленный на радиаторе отопления. При помощи него можно спустить лишний воздух из системы.

Важно правильно спускать воздух:

  • запорной арматурой остановить подачу тепла;
  • открыть кран Маевского, спускать теплоноситель с воздухом;
  • восстановить перемещение тепла, открыв запор.

Узкий проход регулировочного крана нередко объясняет заниженную температуру обратки, это повод заменить его на новый.

Периодически проверяют трубопровод на засорённость, которая мешает движению теплоносителя. Грязь и отложения удаляют. Если восстановить проходимость труб не получается, участок заменяют новым трубопроводом.

Внимание! Установить точную причину неполадки можно после проверки всей отопительной системы.

Разница между подачей и обраткой

Для начала рассмотрим простую схему:

На схеме мы видим котел, две трубы, расширительный бак и группу радиаторов отопления. Красная труба, по которой горячая вода идет от котла к радиаторам называется- ПРЯМОЙ. А нижняя (синяя) труба по которой более холодная вода возвращяется обратно , так и называется- ОБРАТНОЙ. Зная, что при нагреве все тела расширяются (вода в том числе) в нашу систему вмонтирован расширительный бак. Он выполняет сразу две функции: является запасом воды для подпитки системы и в него уходят излишки воды при расширении от нагрева. Вода в данной системе является теплоносителем и поэтому должна циркулировать от котла к радиаторам и обратно. Заставить ее циркулировать может либо насос, либо, при некоторых условиях, сила земной гравитации. Если с насосом все понятно, то с гравитацией у многих могут возникнуть сложности и вопросы. Им мы посвятили отдельную тему. Для более глубокого понимания процесса обратимся к цифрам. К примеру теплопотери дома составляют 10 квт. Режим работы системы отопления стабильный, то есть система ни разогревается, ни остывает. В доме температура не повышается и не понижается.Это значит, что 10 квт вырабатывает котел и 10 квт рассеивают радиаторы. Из школьного курса физики мы знаем, что на нагрев 1 кг воды на 1 градус нам потребуется 4,19 кдж тепла Если мы будем каждую секунду нагревать 1 кг воды на 1 градус, то нам понадобится мощность

Q=4,19*1(кг)*1(град)/1(сек)=4,19 квт.

Если наш котел имеет мощность 10 квт то он может нагреть в секунду 10/4,2=2,4 килограмма воды на 1 градус или 1 килограмм воды на 2,4 градуса, либо 100 грамм воды (не водки) на 24 градуса. Формула для мощности котла выглядит так:

Qкот=4,19*G*(Tвых-Твх) (квт),

где
G- расход воды через котел кг/сек
Твых- температура воды на выходе из котла (можно Т прямой)
Твх- температура воды на входе в котел (можно Т обратной)
Радиаторы тепло рассеивают и количество теплоты которое они отдают зависит от коэффициента теплоотдачи, площади поверхности радиатора и разности температур между стенкой радиатора и воздухом в комнате. Формула выглядит так:

Qрад=k*F*(Трад-Твозд),

где
k-коэффициент теплоотдачи. Величина для бытовых радиаторов практически постоянная и равная k=10ватт/(кв метр*град).
F- суммарная площадь радиаторов (в кв. метрах)
Трад-средняя температура стенки радиатора
Твозд- температура воздуха в комнате.
При стабильном режиме работы нашей системы всегда будет выполняться равенство

Qкот=Qрад

Рассмотрим подробнее работу радиаторов с применением рассчетов и цифр.
Допустим суммарная площадь их оребрения равна 20 кв метров,( что приблизительно соответствует 100 ребрам). Наши 10 квт=10000вт эти радиаторы отдадут при разнице температур в

dT=10000/(10*20)=50 градусов

Если температура в комнате равна 20 градусам, то средняя температура поверхности радиатора будет

20+50=70 градусов.

В случае когда наши радиаторы имеют большую площадь, например 25 квадратных метров (где-то 125 ребер) то

dT=10000/(10*25)=40 градусов.

И средняя температура поверхности составит

20+40=60 градусов.

Отсюда вывод: Если хотите сделать низкотемпературную систему отопления не скупитесь на радиаторы. Средняя температура есть среднеарифмитическое между температурами на входе в радиаторы и выходе.

Тср=(Тпрям+Тобр)/2;

Разница же температур между прямой и обраткой тоже немаловажная величина и характеризует циркуляцию воды через радиаторы.

dT=Тпрям-Тобр;

Помним, что

Q=4,19*G*(Тпр-Тобр)=4,19*G*dT

При неизменной мощности увеличение расхода воды через прибор приведет к снижению dT и наоборот при снижении расхода dT увеличится. Если задаться, что dT в нашей системе составляет 10 градусов, то в первом случае когда Тср=70 градусов после несложных вычислений получим Тпр=75 град и Тобр=65 град. Расход воды через котел равен

G=Q/(4,19*dT)=10/(4,19*10)=0,24 кг/сек.

Если мы уменьшим расход воды ровно в два раза, а мощность котла оставим прежней, то разница температур dT возрастет в два раза. В предыдущем примере мы задавались dT в 10 градусов, таперь при уменьшении расхода она станет dT=20 градусов. При неизменной Тср=70, мы получим Тпр-80 град и Тобр=60 град. Как видим уменьшение расхода воды влечет за собой повышение температуры прямой и снижение температуры обратки. В случаях, когда расход снижается до какой-то критической величины мы можем наблюдать закипание воды в системе. (температура кипения=100 градусов) Так же закипание воды может происходить при переизбытке мощности котла. Явление это крайне нежелательное и очень опасное , поэтому хорошо спроектированная и продуманная система, грамотный подбор оборудования и качественный монтаж это явление исключает.
Как видим из примера температурный режим системы отопления зависит от мощности, которую нужно передать помещению , площади радиаторов и расхода теплоносителя. Объем же теплоносителя залитый в систему при стабильном режиме ее работы не играет никакой роли. Единственное на что влияет объем так это на динамику системы, то есть на время разогрева и остывания . Чем он больше, тем и время разогрева дольше и тем дольше время остывания, что несомненно в некоторых случаях является плюсом. Осталось рассмотреть работу системы в этиъх режимах.
Вернемся к нашему примеру с 10 квтным котлом и радиаторами в 100 ребер с 20 квадратами площади. Насос задает расход в G=0,24 кг/сек. Емкость системы зададим в 240 литров.
К примеру в дом после долгого отсутствия приехали хозяева и начали топить. Дом за время их отсутствия остыл до 5 градусов, как и вода в системе отопления. Включив насос , мы создадим циркуляцию воды в системе, но пока котел не разожжен температура прямой и обратки будет равна одинакова и равна 5 градусов. После розжига котла и выхода его на мощность в 10 квт картина будет следующая: Температура воды на входе в котел будет 5 градусов, на выходе из котла 15 градусов, температура на входе в радиаторы 15 градусов, а на выходе из них чуть меньше 15.(При таких температурах радиаторы практически ничего не излучают) Все это будет продолжаться 1000 секунд, пока насос не прокачает всю воду через систему и к котлу не придет обратка с температурой в почти 15 градусов. После этого котел уже будет выдавать 25 градусов, а радиаторы возвращать в котел воду с температурой чуть менее 25 (примерно 23-24 градуса). И так опять 1000 секунд.

В конце концов система прогреется до 75 градусов на выходе, а радиаторы будут возвращать 65 градусов и система перейдет в стабильный режим. Если бы в системе было 120 литров, а не 240, то система прогрелась бы в 2 раза быстрее. В случае, когда котел потушили, а система горячая, начнется процесс остывания. То есть система будет отдавать дому накопленное тепло. Ясно , что чем больше объем теплоносителя тем дольше будет происходить этот процесс. При эксплуатации твердотопливных котлов это позволяет растянуть время между дозагрузками. Чаще всего эту роль на себя берет теплоаккумулятор, которому мы посвятили отдельную тему. Как и различным видам систем отопления.

Функции

Для начала выясним, зачем создается перепад. Его главная функция – обеспечение циркуляции теплоносителя. Вода всегда будет двигаться из точки с большим давлением в точку, где давление меньше. Чем больше перепад – чем больше скорость.

Полезно: ограничивающим фактором становится растущее с увеличением скорости потока гидравлическое сопротивление.

Кроме того, перепад искусственно создается между циркуляционными врезками горячего водоснабжения в одну нитку (подачу или обратку).

Циркуляция в данном случае выполняет две функции:

  1. Обеспечивает стабильно высокую температуру полотенцесушителей, которые во всех современных домах размыкают собой один из соединенных попарно стояков ГВС.
  2. Гарантирует быстрое поступление горячей воды к смесителю вне зависимости от времени суток и водоразбора по стояку. В старых домах без циркуляционных врезок воду по утрам приходится подолгу сливать до ее нагрева.

Наконец, перепад создается современными приборами учета расхода воды и тепла.

Электронный теплосчетчик.

Как и для чего? Для ответа на этот вопрос нужно отослать читателя к закону Бернулли, согласно которому статическое давление потока обратно пропорционально скорости его движения.

Это дает нам возможность сконструировать прибор, регистрирующий расход воды без использования ненадежных крыльчаток:

  • Пропускаем поток через переход сечения.
  • Регистрируем давления в узкой части счетчика и в основной трубе.

Зная давления и диаметры, при помощи электроники можно рассчитывать в реальном времени скорость потока и расход воды; при использовании же термодатчиков на входе и выходе из контура отопления несложно вычислить количество оставшегося в системе отопления тепла. Заодно по разнице расхода на подающем и обратном трубопроводах рассчитывается потребление горячей воды.

Регулировка

Как отрегулировать напор в элеваторном узле?

Подпорная шайба

Если быть точным, в случае подпорной шайбы требуется не регулировка напора, а периодическая замена шайбы на аналогичнуюиз-за абразивного износа тонкого стального листа в технической воде. Как своими руками заменить шайбу?

Инструкция, в общем, довольно проста:

  1. Все задвижки или вентиля в элеваторе перекрываются.
  2. Открывается по одному сброснику на обратке и подаче для осушения узла.
  3. Раскручиваются болты на фланце.
  4. Вместо старой шайбы устанавливается новая, снабженная парой прокладок – по одной с каждой стороны.

Совет: в отсутствие паронита шайбы вырезаются из старой автомобильной камеры.
Не забудьте вырезать ушко, которое позволит завести шайбу в паз фланца.

  1. Болты стягиваются попарно, крест-накрест. После того, как прокладки прижаты, гайки закручиваются до упора не более чем на пол-оборота за раз. Если поспешить, неравномерное сжатие рано или поздно приведет к тому, что прокладку вырвет давлением с одной стороны фланца.

Система отопления

Перепад между смесью и обраткой штатно регулируется только заменой, завариванием или рассверливанием сопла. Однако иногда возникает необходимость убрать перепад, не останавливая отопления (как правило, при серьезных отклонениях от температурного графика в пик холодов).

Это делается регулировкой входной задвижки на обратном трубопроводе; тем самым мы убираем перепад между прямой и обратной нитками и, соответственно, между смесью и обраткой.

Для регулировки используется нижняя задвижка под номером 1.

  1. Замеряем давление на подаче после входной задвижки.
  2. Переключаем ГВС на подающую нитку.
  3. Вкручиваем манометр в сбросник на обратке.
  4. Полностью закрываем входную обратную задвижку и потом постепенно открываем ее до тех пор, пока перепад не уменьшится от первоначального на 0,2 кгс/см2. Манипуляция с закрытием и последующим открытием задвижки нужна для того, чтобы ее щечки максимально опустились на штоке. Если просто прикрыть задвижку, щечки могут просесть в дальнейшем; цена смехотворной экономии времени – как минимум размороженное подъездное отопление.
  5. Температура обратного трубопровода контролируется с интервалом в сутки. При необходимости ее дальнейшего снижения перепад убирается по 0,2 атмосферы за раз.

Давление в автономном контуре

Непосредственное значение слова «перепад” – изменение уровня, падение. В рамках статьи мы затронем и его. Итак, почему падает давление в системе отопления, если она представляет собой замкнутый контур?

Для начала вспомним: вода практически несжимаема.

Избыточное давление в контуре создается за счет двух факторов:

  • Наличия в системе мембранного расширительного бака с его воздушной подушкой.

Устройство мембранного расширительного бачка.

  • Упругости труб и радиаторов отопления. Их эластичность стремится к нулю, но при значительной площади внутренней поверхности контура этот фактор тоже сказывается на внутреннем давлении.

С практической стороны это означает, что регистрируемое манометром падение давления в системе отопления обычно вызвано крайне незначительным изменением объема контура или уменьшением количества теплоносителя.

А вот возможный список того и другого:

  • При нагреве полипропилен расширяется сильнее, чем вода. При запуске собранной из полипропилена системы отопления давление в ней может незначительно упасть.
  • Многие материалы (в том числе алюминий) достаточно пластичны для того, чтобы при длительном воздействии умеренных давлений менять форму. Алюминиевые радиаторы могут просто-напросто раздуваться со временем.
  • Растворенные в воде газы постепенно покидают контур через воздухоотводчик, влияя на реальный объем воды в нем.
  • Значительный нагрев теплоносителя при заниженном объеме расширительного бака отопления может вызывать срабатывание предохранительного клапана.

Наконец, нельзя исключать и вполне реальные неисправности: незначительные течи по стыкам секций и швам сварки, травящий ниппель расширительного бака и микротрещины в теплообменнике котла.

На фото – межсекционная течь на чугунном радиаторе. Зачастую ее можно заметить лишь по следам ржавчины.

Надеемся, что нам удалось ответить на накопившиеся у читателя вопросы. Прикрепленное к статье видео, как обычно, предложит его вниманию дополнительные тематические материалы. Успехов!

Понравилась статья? Подписывайтесь на наш канал Яндекс.Дзен
Владимир БОНКО Опубликовано: 03.07.2015

Температура обратки отопления | Блог инженера теплоэнергетика

          Доброго времени суток, уважаемые читатели! Если вы хотя бы немного сталкивались с эксплуатацией и обслуживанием систем центрального отопления, то вам наверняка приходилось слышать про такое понятие, как перегрев обратки.Что же это такое, почему возникает, и как с ним бороться?

         Перегрев обратки – это когда температура воды на выходе с дома превышает температуру, которая должна быть по температурному графику. То есть по графику допустим, в обратке должно быть  63 °С, по факту 67 °С. Причем перегрев по температурному графику надо смотреть не по температуре наружного воздуха, так как тепловая сеть инерционна, а температура в течение дня меняется. Сравнивать нужно по температуре t1, то есть температуре в подаче.

       Смотрим вначале показания термометра по подаче t1, затем  в температурный график, какая должна быть соответствующая температура t2. Затем смотрим по термометру фактическую t2 и сравниваем с t2 по графику. Хорошо, когда t2 совпадает или чуть меньше t2 по температурному графику. И плохо если по факту температура обратка завышена против графика. Согласно пункту 9.2.1 «Правил технической эксплуатации тепловых энергоустановок» “среднесуточная температура обратной сетевой воды не должна превышать заданную температурным графиком температуру более чем на 5%”.

       Сейчас ушлые энергетики включают в обязательном порядке этот пункт из Правил в договоры теплоснабжения. То есть если перегрев у вас выскочит за пределы 5% , то вам дополнительно насчитают денежный штраф за превышение обратки. Если перегрев укладывается в эти 5%, штрафа не будет, но лучше вам все равно перегрев устранить. Идеальный вариант – когда обратка у вас в графике, или немного ниже.

          Причин перегрева в основном две. Первая – переток через различные перемычки между подачей и обраткой, то есть из подачи в обратку. В основном это происходит либо через линию горячего водоснабжения, либо через вентиляцию. Поэтому если у вас обнаружился перегрев, в первую очередь посмотрите, нет ли перетока из подачи в обратку. Но по факту такое происходит нечасто.

         Основная и главная причина перегрева, в 95 % случаев – это повышенный расход сетевой воды. То есть сетевой воды при перегреве через ваш теплоузел проходит больше, чем вам нужно на самом деле. Почему же энергетики так борются с перегревом? Повышенный расход сетевой воды свидетельствует о не расчетном расходе теплоносителя, то есть расход завышен и больше расчетного. А это – завышенная циркуляция, при которой происходит рост расхода электроэнергии на привод сетевых насосов на теплоисточнике. Электроэнергия стоит денег, поэтому завышенная обратка – прямые убытки для теплоснабжающей организации.

         Приходилось слышать мнение,  что завышенная обратка выгодна потребителю. Дескать, если вернуть с дома Т2 с перегревом от графика, то теплопотребление станет меньше, т.к. разница Т1-Т2 уменьшится. Однако это не так. Количество тепла Qпотр., Гкал, считается в общем случае так. Количество тепла по подаче Q 1 = G1* ( t1- tх.в.)*0,001 где G1 – это расход воды в тоннах в час; т/час; t1 – температура воды по подаче ; tх.в. – температура холодной воды, которая подготавливается и нагревается на теплоисточнике, обычно tх.в. принимается  5 °С.

       Количество тепла по обратке считается аналогично: Q 1  = G2*(t2- tх.в.)*0,001. Расход потребленного тепла определяется по формуле: Qпотр = Q1— Q2= G1*( t1- tх.в.)*0,001- G2*(t2- tх.в.)*0,001. Вот и получается, что хоть разница t1- t2 и уменьшается в случае перегрева, но повышенный расход G формуле в итоге перевешивает, и количество тепла Qпотр все же получается больше. Вообщем вывод такой: для потребителя перегрев по обратке означает перетоп всего здания и повышение количества потребленного тепла и потребителю однозначно экономически невыгоден.

         Как устранить перегрев? Для этого в ИТП (теплоузле) на подаче, до элеватора необходимо отрегулировать регулятор давления (либо регулятор расхода), смотря что установлено. Что такое регулятор давления РД, я писал здесь. Регулируя через РД давление, и смотря по показанием теплосчетчика, либо термометров и манометров, можно выставить необходимое давление, при котором расход не будет превышать расчетный. Лучше конечно, пусть это сделают специалисты. Если  теплоузел у автоматизирован современной автоматикой, то при нормальном режиме работы оборудования перегрев невозможен в принципе.

      Совсем недавно я написал и выпустил книгу, полностью посвященную  обратке отопления, перегреву по обратке. Она называется «Все,что вы хотели знать про перегрев обратки!».

Вот содержание этой книги:

1. Введение

2. Что такое обратка отопления?

3. Из за чего возникает перегрев обратки?

4. Штрафные санкции со стороны теплоснабжающей организации за перегрев обратки.

5. Как отрегулировать систему отопления и устранить перегрев по обратному трубопроводу?

6. Заключение

Просмотреть ее можно по ссылке ниже:

Все, что вы хотели знать про перегрев обратки!

         Буду рад комментариям к статье.


Большая разница температуры между подачей и обраткой

Какая температура подачи на теплом полу должна быть ? стяжка 7,5 см. Ставлю 40 градусов, подача горячая, обратки чуть теплые. Пол практически не греется, но не холодный, нейтральный. Расход по расходомеру выставил 2 литра в мин.

kilowat , температура поверхности зависит и от теплосъёма. При подаче 40С и стяжке 7,5 см трудно заметить что то.
2литра/мин — нижний предел. Чуть тёплая обратка не должна быть холоднее подачи на 10 градусов. Смеситель от Дюйма я не смог рассмотреть. Что там за насос? И лучше ссылкой на чудо.

cineman , (не реклама). То есть скорость нужно регулировать 3-4 литра ? Насос работал на 1 режиме. Температуру обратки сложно оценить, на руку конечно прохладнее подачи прилично. Вчера оставил включенным часа на 4-5, маленько лучше конечно прогрелся. Если сравнивать с полом где нет подогрева, то конечно приятнее. Но прям тепла исходящего от пола нет. Какую температура подачи обычно ставят на клапане ? На котле 50 градусов

зачем покупаете всякую хрень?

kilowat написал:
Насос работал на 1 режиме.

Задача полового насоса держать разницу подача/обратка минимальной. Для чего нужна максимальная производительность.
Температура подачи в пол непростой вопрос. Ваш коллектор и смеситель к нему предполагают установку термических приводов на клапаны контуров, которые управляются комнатными термостатами. Температура подачи в такой схеме обычно выбирается постоянной — 50С

cineman , а скорость потока чем выше тем лучше ? на расходомерах кажется максимальная шкала в 4 литра

cineman написал:
зачем покупаете всякую хрень?

мне этот смесительный узел в армавире, краснодарский край, за 19900 предлагали, в них особо не разбираюсь, поэтому нашел дешевле чем у нас в городе и купил, думал хороший

kilowat написал:
cineman, а скорость потока чем выше тем лучше ?

Дааааа. Если скорость носителя будет низкой, носитель будет остывать до более низкой температуры, и это проявится в виде неравномерности нагрева пола.

kilowat написал:
смесительный узел в армавире

Простите, географию не учёл. Просто эти смесители представляют собой системную недоделку. Их нельзя уверенно использовать в комбинации с радиаторным отоплением. Правда уже нарисовались комнатные термостаты, которые решают проблему совместной работы пола и радиатора в одной комнате, но цена.

Нужен ли на теплый пол терморегулятор, который температуру держит комнаты?

Toshik написал:
Нужен ли на теплый пол терморегулятор, который температуру держит комнаты?

Toshik , опишите всю конструкцию.

Toshik написал:
Нужен ли на теплый пол терморегулятор, который температуру держит комнаты?

Toshik , опишите всю конструкцию.

cineman , Дом деревянный, облицован крипичем, трубы через 15 см, толщина стяжки 10см. 3 жилых+1 кухня + ванна, 75 квадратов всего.Котел Бош 6000, гребенка без подлива. Батарей нету.

В этом случае в каждую комнату термостат по воздуху, который полностью открывает/закрывает трубу этой комнаты на гребёнке.

Toshik написал:
гребенка без подлива.

Я нашёл в описании котла возможность управления по уличной температуре только с помощью какого то внешнего OpenTherm. Это печально. Для полов удобно использовать максимально пологий график погодной автоматики.

Toshik написал:
толщина стяжки 10см

Это много. В большой толщине есть два недостатка и одно достоинство — можно держать температуру котла выше, чем на тонких стяжках. При работе на полы скорость насоса нужно устанавливать на максимум. Но, всё равно обратка может быть настолько холодной, что на котле сгорающий газ будет выпадать конденсатом на теплообменнике и вызывать коррозию.
Недостаток толстой стяжки в большой её теплоёмкости. Стяжка уже нагреет воздух до заданной температуры, термостат отключит подачу носителя ветки, а тепло из стяжки продолжит излучаться в комнату и повышать температуру.
Нужно собрать схему, суммирующую сигналы термостатов комнат. Когда все сигналы с термостатов отключены, должен быть разомкнут контакт на разъёме №16
Не смог найти способ снижения мощности котла в режиме отопления. Но такая возможность снижения должна быть. Попробуйте уменьшить мощность до 50%

В этом случае в каждую комнату термостат по воздуху, который полностью открывает/закрывает трубу этой комнаты на гребёнке.

Toshik написал:
гребенка без подлива.

Я нашёл в описании котла возможность управления по уличной температуре только с помощью какого то внешнего OpenTherm. Это печально. Для полов удобно использовать максимально пологий график погодной автоматики.

Toshik написал:
толщина стяжки 10см

Это много. В большой толщине есть два недостатка и одно достоинство — можно держать температуру котла выше, чем на тонких стяжках. При работе на полы скорость насоса нужно устанавливать на максимум. Но, всё равно обратка может быть настолько холодной, что на котле сгорающий газ будет выпадать конденсатом на теплообменнике и вызывать коррозию.
Недостаток толстой стяжки в большой её теплоёмкости. Стяжка уже нагреет воздух до заданной температуры, термостат отключит подачу носителя ветки, а тепло из стяжки продолжит излучаться в комнату и повышать температуру.
Нужно собрать схему, суммирующую сигналы термостатов комнат. Когда все сигналы с термостатов отключены, должен быть разомкнут контакт на разъёме №16
Не смог найти способ снижения мощности котла в режиме отопления. Но такая возможность снижения должна быть. Попробуйте уменьшить мощность до 50%

cineman , Согласен, настройки котла нельзя отрегулировать на кпд — если подключен термостат, котел будет работать на максимальную свою мощность. Есть такая схема по нескольким термостатам, но эта схема с севдоприводом и стоит денюжек неплохих. Поэтому нужен ли здесь стандартный с программированием по времени термостатом? Или все же вручную настроить котел?

Toshik написал:
если подключен термостат, котел будет работать на максимальную свою мощность.

Это не так. Комнатный термостат уменьшает или убирает совсем тактование котла. В результате понижается износ котла и уменьшается расход топлива, так как электроника котла успевает подстроиться под величину мощности потребляемой системой отопления.

Современные котлы, электронно модулируют свою мощность примерно в интервале 40-100% (неконденсационные) и 12-100% (конденсационные в неконденсационном высокотемпературном режиме).

Гидравлический расчёт систем отопления. Теплорасчёт (расчёт утепления) домов и квартир.

Toshik написал:
настройки котла нельзя отрегулировать на кпд

Совершенно верно, сам котел вне связи с системой нельзя. Но на максимальный КПД котла можно настроить систему отопления в связке с котлом.

Гидравлический расчёт систем отопления. Теплорасчёт (расчёт утепления) домов и квартир.

cineman написал:
Не смог найти способ снижения мощности котла в режиме отопления. Но такая возможность снижения должна быть. Попробуйте уменьшить мощность до 50%

В современных котлах как правило можно электронно уменьшить максимальную мощность котла (но только максимальную. ). Но уменьшить минимально возможную модулируемую мощность котла невозможно. Например, котел может модулировать сам свою мощность в интервале 10-24 кВт (номинальная мощность 24 кВт). Можно уменьшить верхний предел, например, 20 или 18 кВт, тогда котел будет модулировать в интервале 10-18 кВт. Но сделать так, чтобы котел мог модулировать мощность в интервале 5-18 — уже невозможно.

Гидравлический расчёт систем отопления. Теплорасчёт (расчёт утепления) домов и квартир.

Toshik написал:
Есть такая схема по нескольким термостатам, но эта схема с севдоприводом и стоит денюжек неплохих

Это разные схемы. Попробуйте использовать комнатный термостат по одному из помещений, отключающий котёл.

Toshik написал:
Согласен, настройки котла нельзя отрегулировать на кпд — если подключен термостат, котел будет работать на максимальную свою мощность.

Вообще не понял о чём. В описании котла есть максимальная и минимальная мощности. Я читал инструкцию по установке. Возможно, описание меню с настройками мощности в пользовательской инструкции. Но для нагрузки в виде пола можно и полную мощность оставить. Тактования не будет по любому.

Добрый день! Возник такой вопрос — частный одноэтажный дом, система отопления полностью заменена на теплый пол, 6 петель от 65, до 81 м/п возможна ли установка расширительного бака открытого типа?

Виктор Фараон , для труб пола открытый бак не страшен. От растворённого кислорода страдают стальные элементы системы.

Виктор Фараон написал:
возможна ли установка расширительного бака открытого типа?

Виктор Фараон написал:
частный одноэтажный дом, система отопления полностью заменена на теплый пол, 6 петель от 65, до 81 м/п возможна ли установка расширительного бака открытого типа?

По умолчанию возможна, что лучше для удаления растворенного воздуха из системы, чему яркий пример работающие до сих пор, некоторые уже больше полувека, старые открытые стальные системы.

Добрий день. В мене на даний момент встановлено такий роспридільник ( і саме в такій комплектації), котел 2 контурний, квартира 80 квадрітів на 3 контура розділена ТП.
Декілька днів тому дізнався що котел повенен працювати на високій температурі більше 60 градусів, для того щоб не осідав конденсат та не ржавів теплообмінник. Тому запитання, як правильно відрегулювати роспридільник «гребінку» так щоб підлога гріла, плитка не відлетіла і котел не ржавів.

Star1ing , Рад бы был помочь, но не понимаю Украинского Языка.

Гидравлический расчёт систем отопления. Теплорасчёт (расчёт утепления) домов и квартир.

Star1ing ,
Опишите по-русски Вашу проблему. Здесь, вообще-то форум русскоязычный, поэтому прошу отбросить в сторону национализм.

Гидравлический расчёт систем отопления. Теплорасчёт (расчёт утепления) домов и квартир.

Добрый день. У меня сейчас установлен такя «гребенка» (и именно в такой комплектации), котел 2 контурный, квартира 80 кв. на 3 контура разделена ТП.
Несколько дней назад узнал что котел должен работать на высокой температуре более 60 градусов, для того чтобы не оседал конденсат и не ржавый теплообменник. Поэтому вопрос, как правильно отрегулировать «гребенку» так чтобы пол грела, плитка не отлетела и котел ржавые .

Star1ing , радиаторы есть в квартире?

Star1ing написал:
Поэтому вопрос, как правильно отрегулировать «гребенку» так чтобы пол грела, плитка не отлетела и котел ржавые .

НУЖНО добавить НСУ, в Вашем случае низкотемпературный!

Вкратце это насос, двухходовой термоклапан с выносным датчиком, соединенные трубками соответствующим образом между подачей, обраткой котла и между подачей, обраткой коллектора, то есть НСУ включен в разрыв магистральных труб от котла к коллектору, несколько фото ширпотребовских НСУ есть в теме.

Если собирать из дискретных деталей получится лучше по функционалу и в добавок дешевле .

Можно переплатив купить готовый, так называемый ширпотреб сделай сам БЕЗ понимания в гидравлике, теплотехнике и ПОСТОЯННО переплачивать за покупные энергоносители, что 99,999. % владельцев отопительных систем устраивает.

Посититель , дай ссылку плз, как оптимально и не дорого собрать самому.

Добрый день.
Извиняюсь, что вклиниваюсь в высокопрофессиональный разговор весьма уважаемых на форуме людей,
но меня наболевший вопрос, который мучает и не дает покоя, поскольку я сам собираюсь
монтировать отопление в доме. Многое изучил, понял как мне монтировать конвекторы
(альтернатива радиаторам) совместно с теплыми полами, но.
Газовщики, которые будут устанавливать настенный котел уверяют, что «раз будет полотенцесушитель,
то тебе по любому надо ставить дополнительный насос в систему теплого пола». А мне не хочется.
Неужели нельзя обойтись встроенным в котел насосом?
Котел Бакси на 12 квт, излишне мощный для моего маленького дома 50 кв. м. Должно же хватить.
Дом находится на юге нашей страны в Краснодарском крае. Зимы как таковой с морозами
у нас нет, поэтому я решил отапливаться теплыми полами. К тому же у меня французские окна
от пола до потолка, ставить радиаторы негде. Но холод из окон все же будет, и его надо как-то
отсекать, поэтому все же решил установить под каждым окном внутрипольные водяные конвекторы
(а может быть остановлюсь на мини-радиаторах в нишах пола вдоль окон).
Таким образом, образовалась следующая схема: от котла в полу в разные стороны идут две тупиковые ветки на
конвекторы и параллельно им от котла в подачу с обраткой монтируется коллектор теплых полов на 5
контуров (по 50 м 16-й трубы в контуре, не больше).
Вот тут-то вся загвоздка. Можно установить термостатические клапаны РТЛ на обратке коллектора
(аж 5 штук, что дорого), но мне не хочется. Если делать узел подмеса с трехходовым клапаном,
то надо ставить дополнительный насос. Тоже не хочется, потому что котельной как таковой нет,
а значит это лишний шум и лишние затраты электроэнергии.
На Ю-тюбе есть ролики, в которых авторы предлагают схемы без насоса с коллекторным узлом на
3 ветки, но как это работает на самом деле и работает ли вообще — вопрос. Они ставят на подаче
кран с термоголовкой и датчик на обратке, но при таком монтаже скорость потока будет сильно замедляться,
потому что термоголовка будет чаще закрываться от горячей воды в трубах и в теплые полы теплоноситель
не сильно то будет заходить.
Вывод какой и вопрос мой какой: альтернативы нет? Либо РТЛ-клапаны, либо насос?

Это комфортная для жильцов температура в помещении. Желаемая температура — очень индивидуальный параметр, ведь кому-то нравится высокая температура в помещении, а кому-то прохлада.

Европейские нормы указывают, что в спальне, кабинете, гостиной, столовой и кухне оптимальной является температура 20-24°С; в туалете, кладовой, гардеробной — 17-23°С; в ванной — 24-25°С.

Усредненно можно задать 20°С.

Температура подачи — температура теплоносителя в подающем коллекторе. Т.е. на входе в контур теплого пола.

Температура обратки — температура теплоносителя в обратном коллекторе (на выходе из контура).

Для того, чтобы теплый пол отапливал помещение, он должен отдавать тепло, т.е. температура подачи должна быть выше температуры обратки. Оптимально, если разница температуры подачи и обратки составляет 10°С (например, подача — 45°С, обратка — 35°С).

Для обогрева помещения температура подачи должна быть выше желаемой температуры в помещении.

Эта температура необходима для учета тепла, идущего вниз, т.е. теплопотерь.

Если теплый пол располагается над помещением (нижний этаж, подвал), то используется температура, поддерживаемая в нем. Если пол располагается над грунтом или на грунте, то для расчета используется температура воздуха для самой холодной пятидневки года. Этот показатель автоматически подставляется для выбранного города.

Это расстояние между трубами, залитыми в стяжку пола. От шага укладки зависит теплоотдача теплых полов — чем меньше шаг, тем больше удельная теплоотдача, и наоборот.

Оптимальный шаг укладки труб теплого пола лежит в пределах 10-30 см. При меньшем шаге возможна отдача тепла из подачи в обратку. При большем — неравномерный прогрев пола, когда на поверхности пола над трубой ощущается тепло, а между трубами — холод.

Это сумма длин труб от подающего коллектора до начала контура теплого пола и от конца контура до обратного коллектора.

При размещении коллектора теплого пола в том же помещении, где и теплые полы, влияние подводящей магистрали незначительно. Если же они находятся в разных помещениях, то длина подводящей магистрали может быть большой и ее гидравлическое сопротивление может составлять половину сопротивления всего контура.

Назначение стяжки над трубами теплых полов — воспринимать нагрузку от людей и предметов в отапливаемом помещении и равномерно распределять тепло от труб по поверхности пола.

Минимально допустимая толщина стяжки над трубой составляет 30 мм при наличии армирования. При меньшей толщине стяжка будет обладать недостаточной прочностью. Также, малая толщина стяжки не обеспечивает равномерный нагрев поверхности пола — возникают полосы горячего пола над трубой и холодного между трубами.

Заливать стяжку толще 100 мм не стоит, т.к. это увеличивает инерционность теплых полов, исключает возможность быстрого регулирования температуры пола. При большой толщине изменение температуры поверхности пола будет происходить спустя несколько часов, а то и суток.

Исходя из этих условий, оптимальная толщина стяжки теплого пола — 60-70 мм над трубой. Добавление в раствор фибры и пластификатора позволяет уменьшить толщину до 30-40 мм.

Это температура поверхности пола непосредственно над трубой контура. По нормативным требованиям этот параметр не должен превышать 35°С.

Это температура поверхности пола на равном расстоянии от труб (посередине).

Этот параметр является основным критерием расчета теплого пола в плане комфорта для жильцов. Он представляет собой среднее значение между максимальной и минимальной температурой пола.

По нормам в помещениях с постоянным нахождением людей (жилые комнаты, кабинеты и т.д.) средняя температура пола должна быть не выше 26°С. В помещениях с повышенной влажностью (ванные, бассейны) или с непостоянным нахождением людей температура пола может составлять до 31°С.

Температура пола в 26°С не обеспечивает ожидаемого комфорта для ступней. В частном доме, где никто не вправе владельцу указывать какой температурой обогревать жилье, можно настраивать среднюю температуру пола в 29°С. При этом ступни будут ощущать комфортное тепло. Поднимать температуру выше 31°С не стоит — это приводит к высушиваю воздуха.

Тепловой поток вверх — тепло, отдаваемое теплым полом на обогрев помещения.

Если водяной теплый пол является единственным источником тепла, то тепловой поток вверх должен немного превышать теплопотери помещения.

При использовании теплого пола в комбинации с радиаторами, он компенсирует лишь некоторую часть теплопотерь.

Это тепло, уходящее в перекрытие и нижнее помещение, т.е. тепловые потери. Тепловой поток вниз должен быть как можно меньше. Добиться этого можно увеличением толщины утеплителя.

Мощность теплого пола, включающая полезное тепло (обогрев помещения) и теплопотери (тепловой поток вниз).

Полезное тепло, идущее на обогрев помещения, выделяемое каждым квадратным метром теплого пола.

Теплопотери каждого квадратного метра теплого пола.

Количество тепла, выделяемого каждым квадратным метром теплого пола, на обогрев помещения и на теплопотери вниз.

Величина расхода необходима для правильной балансировки нескольких контуров теплых полов, подключенных к одному коллектору. Полученное значение нужно выставить на шкале расходомера.

От скорости движения теплоносителя по трубе теплого пола зависит акустический комфорт в отапливаемом помещении. Если скорость теплоносителя превышает 0,5 м/с, то возможно образование посторонних звуков от циркуляции теплоносителя. Снижения скорости теплоносителя можно добиться увеличением диаметра трубы или уменьшением ее длины.

По перепаду давления в контуре теплого пола (между подающим и обратным коллектором) подбирается циркуляционный насос. Напор насоса должен быть не меньше, чем перепад давления в самом нагруженном контуре. Если напор насоса ниже перепада давления в контуре, то следует выбрать более мощную модель или уменьшить длину контура.

Надёжность и производительность отопительной системы зависит от эффективной работы всех частей, входящих в неё.

К ним относятся: котёл для подогрева теплоносителя, определённым образом подсоединённые к нему и между собой радиаторы, расширительный бак, циркуляционный насос, запорная и регулирующая арматура, трубопровод необходимого диаметра.

Создание высокоэффективной системы отопления возможно, благодаря специальным знаниям и опыту в этой сфере деятельности. Немаловажную роль в рабочем процессе отопления помещения играет трубопровод обратки.

Обратка в системе отопления, что это такое

Обратка представляет собой часть трубопровода контура отопления, осуществляющая передачу охлаждённого теплоносителя, после его прохождения по системе через подключённые радиаторы, в котёл для повышения температуры. Теплоносителем в основном является вода, иногда антифриз.

Фото 1. Схема отопления с использованием твердотопливного котла. Обратка обозначена синим цветом.

Виды отопительных схем

Для многоэтажных зданий часто применяют однотрубную прямую систему разводки. Она не имеет чёткого разделения труб на подвод жидкости в радиаторы и обратку, поэтому полный контур условно делят на две равные части. Стояк, выходящий из котла, называют подача, а трубы, выходящие из последнего радиатора — обраткой. Преимущества этой схемы:

  • экономия времени и материальных затрат;
  • удобство и простота монтажных работ;
  • эстетичный вид;
  • отсутствие стояка обратки и последовательное расположение радиаторов (теплоноситель подаётся на 1-й, затем 2-й, 3-й и так далее).

Для однотрубной системы распространена вертикальная разводка с вертикальным контуром и подводом тепла сверху.

При двухтрубной системе разводки подразумевается установка двух замкнутых, параллельно подключённых, контуров, один из них обеспечивает функцию подвода теплоносителя к отопительному прибору (радиатору), второй — функцию его отвода (обратка).

Радиаторы подключаются несколькими способами:

  • Нижний (или седельный, серповидный). Предусматривает подключение подвода и обратки к нижним соединительным отверстиям радиатора. На верхние отверстия устанавливают кран Маевского и заглушку. Применяют для систем, в которых трубы скрыты под полом или плинтусом. Целесообразны для многосекционных радиаторов, при небольшом числе секций потери тепла доходят до 15%.
  • Боковой способ, пользуется популярностью. Трубы подсоединяют к радиатору с одной стороны: подвод теплоносителя через верх, обратку — через низ. Не подходит для приборов с большим числом секций.

Фото 2. Двухтрубная схема отопления с боковым типом подключения. Указана температура подачи и обратки.

  • Диагональный (или боковой перекрёстный) способ подразумевает подачу горячей воды сверху, подключение обратки — снизу и с другой стороны. Подходит для радиаторов с числом секций не менее 14 шт.
  • Третьим вариантом организации схемы отопления является гибридный способ, основанный на одновременном использовании однотрубной и двухтрубной систем. Например, коллекторная схема предполагает подачу теплоносителя через одиночный стояк, дальнейшая разводка на месте осуществляется по индивидуальному плану.

Принцип работы, как повысить производительность

Одиночный контур не обеспечивает равномерного прогревания отопительных приборов, теплоотдача уменьшается по мере удаления от котла (в последние радиаторы поступает теплоноситель холоднее, чем на первые). Недостаток подобной системы — большие значения давления теплоносителя.

Справка. производительность однотрубной системы повышается при наличии циркулярного насоса или байпасов, сформированных на каждом этаже.

Преимущества двухтрубного варианта отопления:

  • прогрев достаточного числа приборов в равной степени, вне зависимости от их расстояния до источника тепла;
  • корректирование температурного режима, проведение ремонтных мероприятий на отдельном приборе не оказывает влияние на работу других.

Недостатки:

  • сложность схемы разводки;
  • трудоёмкость установки и подключения.

Оптимальным выбором для частного строительства является самая производительная двухтрубная система, которую также часто выбирают для отопления элитного жилья.

Монтаж двухтрубной системы целесообразно проводить с установкой циркуляционного насоса, который позволяет использовать трубы меньшего диаметра.

После него, с целью предохранения контура рециркуляции от продавливания, ставят обратный клапан.

При монтаже системы без циркулярного насоса соблюдается правило: подача возможна если есть уклон от или к котлу. Теплоноситель с более высокой температурой через подвод (наклон от котла к отопительному прибору) поступает в радиатор и прогревает его, а затем выходит через обратку (наклон от радиатора к котлу), но с уже меньшей температурой. Опытные мастера нередко прибегают к замене рециркуляционного насосного кольца на систему 3-х или 4-х ходовых смесителей.

Важно! При естественной циркуляции, весь трубопровод от стояка к радиаторам не должна иметь большую длину.

Особенности

Продолжительная работа котельного оборудования возможна при правильно спроектированной системе разводки труб, которая обеспечивает определённую разницу температур между трубами, выводящими и подводящими теплоноситель.

Внимание! Наличие существенной разницы температурных значений является причиной образования на камере сгорания обильного конденсата.

Капли воды, особенно в соединении с образующимся при горении оксидом углерода (в случае твердотопливного оборудования), быстро разъедают стенки камеры, нарушается герметичность важного элемента, и котёл выходит из строя.

Приемлемым решением в данной ситуации является подсоединение дополнительного водонагревающего устройства — бойлера. Он устанавливается рядом с котлом специальным образом, чтобы теплоноситель, пройдя по всем приборам системы, попал в него, а затем в котёл.

Фото 3. Система отопления с бойлером для нагрева воды. Прибор установлен рядом с газовым котлом.

Таблица температуры в трубопроводе отопления

Температура отопления, включая трубы обратки, напрямую зависит от показателей уличных термометров. Чем холоднее воздух на улице и выше скорость ветра, тем больше затрат на тепло.

Разработана нормативная таблица, отражающая значения температур на входе, подаче и выходе теплового носителя в системе отопления. Представленные в таблице показатели обеспечивают комфортные условия для человека в жилом помещении:

Темп. внешняя, °С+8+5+1-1-2-5-10-15-20-25-30-35
Темп. на входе424753555658626976839097104
Темп. радиаторов40445051525457647076828894
Темп. обратки34374142434446505458626769

Важно! разница между температурами значениями подачи и обратки зависит от направления движения теплоносителя. Если разводка сверху, перепады составляют не больше 20°С, если снизу — 30°С.

Норма давления

Эффективная передача и равномерное распределение теплоносителя, для производительности всей системы с минимальными потерями тепла возможны при нормальном рабочем давлении в трубных магистралях.

Давление теплоносителя в системе подразделяется по способу действия на в виды:

  • Статическое. Сила воздействия неподвижного теплоносителя на единицу площади.
  • Динамическое. Сила действия при движении.
  • Предельный напор. Соответствует оптимальному значению давления жидкости в трубах и способному поддержать работу всех обогревательных приборов на нормальном уровне.

Согласно СНиП оптимальный показатель равен 8—9,5 атм, снижение давления до 5—5,5 атм. нередко приводит к перебоям отопления.

Для каждого конкретного дома показатель нормального давления индивидуален. На его значение влияют факторы:

  • мощность насосной системы, подающей теплоноситель;
  • диаметр трубопровода;
  • отдалённость помещения от котельного оборудования;
  • износ частей;
  • напор.

Контролировать давление позволяют манометры, монтирующиеся непосредственно в трубопровод.

Почему не работает обратка

Существует множество проблем, связанных с обраткой в отопительной системе.

Передавливает подачу

Температура воды в трубопроводе обратки определяется устройством системы отопления, соответствует значению в графике температур, утверждённому обслуживающей организацией.

Нередко жильцы квартир сталкиваются с проблемой, когда обратка передавливает подачу.

Распространённая причина — переход горячего теплоносителя из магистрали подачи в контур обратки через всевозможные части (например, перемычки) трубопровода горячего водоснабжения или вентиляцию. При автоматическом приборе регулирования, как правило, достаточно его правильно настроить.

Теплоноситель плохо сходит

При нарушении циркуляции жидкости в тепловом контуре, вода в трубах обратки плохо сходит. Первоначально проверяют соответствие мощности циркуляционного насоса требованиям. Причина может скрываться в банальной протечке трубопровода. Ситуация с плохой циркуляцией типична для многоквартирных домов, расположенных на конечном участке теплотрассы с недостаточным перепадом давления.

Обратка холодная, забиты трубы

Низкая температура обратки — серьёзная проблема, мешающая обеспечить комфорт в помещении. Причины холодной обратки:

  • неправильная разводка отопления;
  • воздушный пузырь в системе или стояке;
  • недостаточный расход воды по сети;
  • заниженная температура в подводных трубах;
  • увеличенные объёмы теплопотерь;
  • неэффективность насосного оборудования, результат: слабая циркуляция и недостаточный перепад температур между подачей тепла и обраткой;
  • пониженное давление;
  • забитые трубы и радиаторы.

Применение кранов Маевского позволяет ликвидировать воздушные пробки, препятствующие движению теплоносителя.

Фото 4. Кран Маевского, установленный на радиаторе отопления. При помощи него можно спустить лишний воздух из системы.

Важно правильно спускать воздух:

  • запорной арматурой остановить подачу тепла;
  • открыть кран Маевского, спускать теплоноситель с воздухом;
  • восстановить перемещение тепла, открыв запор.

Узкий проход регулировочного крана нередко объясняет заниженную температуру обратки, это повод заменить его на новый.

Периодически проверяют трубопровод на засорённость, которая мешает движению теплоносителя. Грязь и отложения удаляют. Если восстановить проходимость труб не получается, участок заменяют новым трубопроводом.

Внимание! Установить точную причину неполадки можно после проверки всей отопительной системы.

Отопление придумано для того, что бы в зданиях было тепло, происходил равномерный прогрев помещения. При этом конструкция, обеспечивающая тепло должна быть удобной в эксплуатации и ремонте. Отопительная система – это набор деталей и оборудования, служащих для обогрева помещения. Она состоит:

  1. Источник, создающий тепло.
  2. Трубомагистрали (подачи и обратки).
  3. Нагревательные элементы.


Тепло распространяется от исходной точки его создания к нагревательному блоку при помощи теплоносителя. Это может быть: вода, воздух, пар, антифриз и т.д. Самые применяемые жидкие теплоносителем, то есть водяные системы. Они практичны, так как для создания тепла применяется всевозможный тип топлива, так же способны решить проблему обогрева различных строений, ведь существует реально много схем обогрева, различных по свойствам и стоимости. Так же имеют высокую безопасность эксплуатации, продуктивность и оптимальное использование всего оборудования в целом. Но какой бы сложностью не обладали бы системы отопления, их объединяет один и тот же принцип действия.

Коротко об обратке и подачи в системе отопления

Система водяного отопления с помощью подачи от котла подает разогретый теплоноситель к батареям, которые расположены внутри здания. Это дает возможность распределять тепло по всему дому. Затем теплоноситель, то есть вода или антифриз, пройдя по всем имеющимся радиаторам, теряет свою температуру и подается обратно для нагрева.

Самая незамысловатая структура отопления представляет собой нагреватель, две магистрали, расширительный бак и набор радиаторов. Тот водовод, по которому нагретая вода от нагревателя движется к батареям, называется подачей. А водовод, который расположен внизу радиаторов, где вода, теряет свою изначальную температуру возвращается обратно, так и будет называться- обраткой. Так как, нагреваясь, вода расширяется, то система предусматривает специальный бачок. Он решает две задачи: запас воды, что бы насыщать систему; принимает лишнюю воду, которая получается при расширении. Вода, как носитель тепла направляется от котла к радиаторам и назад. Ее течение обеспечивает насос, или естественная циркуляция.

Подача и обратка присутствует в одно и двух трубчатой системе отопления. Но в первой не существует четкого распределения на подающую и обратную трубу, а всю трубную магистраль условно делят пополам. Колонну, которая выходит от котла, называют подачей, а колонну, выходящую с последнего радиатора – обраткой.

В однотрубчатой магистрали нагретая вода из котла последовательно течет из одной батареи в другую, теряя свою температуру. Поэтому в самом конце батареи будут самими холодными. Это главный и, наверное, единственный минус такой системы.

Такая система специалистами считается более оптимальной. Ведь ее работа зыблется на подаче горячей воды по одной трубе, а охлажденную воду отводят в обратном направлении по другой трубе. Радиаторы в таком случае подключаются параллельно, что обеспечивает равномерность их нагрева. Какая из них устанавливает подход должен быть индивидуальным, учитывая при этом множество различных параметров.

Необходимо соблюдать только несколько общих советов:

  1. Вся магистраль должна быть целиком заполнена водой, воздуха это помеха, если трубы завоздушены, качество отопления плохое.
  2. Необходимо поддерживалась достаточно большая скорость циркуляции жидкости.
  3. Разница температур подачи и обратки должна составлять около 30 градусов.

В чем состоит разница между подачей и обраткой отопления

И так, подведем итоги, чем же отличаются между собой подача и обратка в отоплении:

  • Подача – теплоноситель, который идет по водоводам из источника тепла. Этом может быть индивидуальный котел или центральное отопления дома.
  • Обратка — это вода, которая пройдя путь по всех батареям отопления, уходит обратно к источнику тепла. Поэтому на входе системы — подача, на выходе- обратка.
  • Отличается так же температурой. Подача горячее, чем обратка.
  • Способом установки. Тот водовод, который крепится, к верхней части батареи – это подача; тот, что, подключается к нижней части — является обраткой.

установка, обвязка, схема подключения — Нибко-юг

Источник:www.master-forum.ru- официальный сайт журналов «Инструменты», «GardenTools» и «Всё для стройки и ремонта» серии «Потребитель»

В простейшей системе отопления циркуляция теплоносителя происходит естественным путём за счёт разности объёмных весов нагреваемой и остывающей воды. Горячая вода, как более лёгкая, поднимается по стоякам и разводящим магистралям. Затем она остывает, отдавая тепло батареям, по обратной магистрали устремляется к исходной точке — источнику тепла, и всё начинается сначала.

Такая схема жизнеспособна, если давление воды достаточно для преодоления всех препятствий. В противном случае вода остынет раньше, чем пройдёт весь контур, и система, как говорят, «встанет». Чтобы этого не произошло, в систему отопления встраивают циркуляционный насос. Он не только обеспечивает постоянное движение воды, но и поддерживает нужный для этого напор. Напором называют разницу давления между начальной и конечной точками движения теплоносителя. Это сумма всех потерь на трение в трубах и на преодоление местных сопротивлений — радиаторов, регулирующих кранов, фильтров, приборов учёта тепла.

Второй важной задачей циркуляционного насоса является экономия тепла и материалов. За счёт более высоких скоростей движения воды в насосных схемах используются трубы меньших диаметров и отопительные приборы меньшей поверхности нагрева. Поэтому происходит разовая экономия материалов при монтаже.

В дальнейшем, если у каждого радиатора установлен термостат (регулирующий кран, обеспечивающий постоянную температуру в помещении), то насос, управляемый частотным преобразователем, прокачивает ровно столько воды, сколько необходимо подать через термостаты. Таким способом — за счёт плавной регулировки скорости вращения ротора — обеспечивается постоянное энерго­сбережение.

Когда тонкое игольчатое отверстие термостата перекрывается при достижении необходимой температуры, в нём резко возрастает гидравлическое сопротивление и, как следствие, возникает шум. В этом случае насос с частотным регулированием переходит на малые обороты, обеспечивая низкие шумовые характеристики системы отопления.

СХЕМЫ УСТАНОВКИ

Основных вариантов установки циркуляционного насоса два — на подающей линии и на обратной. С точки зрения гидравлики нет принципиальной разницы, где располагать насос. В основном циркуляционный насос монтируется на «обратке». Первая причина — конструктивная — заключается в том, что до и после насоса устанавливаются резиновые гибкие вставки. Их назначение — предотвращать передачу механических вибраций от насоса по транспортируемой среде, то есть по воде. Гибкие вставки могут также использоваться в качестве компенсаторов тепловых удлинений трубопроводов.

Хотя предельной температурой эксплуатации гибкой вставки считается 95 оС, существует зависимость срока службы от температуры теплоносителя. При температуре 60 и более градусов этот срок резко сокращается.

Вторым, и основным, аргументом в пользу установки циркуляционного насоса на обратном трубопроводе является угроза закипания воды при неисправности и завоздушивание котла. Насос не предназначен для перекачки пара, его крыльчатка в этом случае превращается в мощное сопротивление для пароводяной смеси. В результате циркуляция останавливается, тогда как давление на выходе из котла продолжает расти и котёл может взорваться. Это не относится к современным отопительным агрегатам, которые защищены автоматикой от перегрева и закипания.

Кроме чисто циркуляционных схем, существуют варианты с подмесом обратной воды в подающую линию. Например, если в частном доме установлен общий котёл, который должен обеспечить водой и систему отопления с максимальной температурой 90 оС, и контур тёплых полов с более низкой температурой воды. В этом случае на обратной линии основной системы устанавливается циркуляционный насос. А на перемычке между подающим и обратным трубопроводом системы обогрева полов — отдельный смесительный насос, который часть остывшей воды из обратной линии направляет снова в подающую, снижая, таким образом, температуру подачи. При этом насос также обеспечивает циркуляцию в системе.

ОБВЯЗКА НАСОСНОГО УЗЛА

Циркуляционный насос устанавливается не сам по себе, а в комплекте с необходимым дополнительным оборудованием, которое принято называть обвязкой насосного узла. Во‑первых, это уже упомянутые гибкие вставки. Они изготавливаются из полихлоропреновой резины. У неё высокая термостойкость, хорошая адгезия к тканям и металлам, стойкость к атмосферным воздействиям и естественному окислению. При растяжении такая резина кристаллизуется, благодаря чему гибкие вставки обладают высокой прочностью. Для присоединения к трубопроводу они имеют чугунные присоединительные патрубки с накидными гайками и внутренней резьбой или стальные фланцы. При диаметре 100 мм и больше гибкие вставки комплектуются стальными контрольными стержнями, которые ограничивают их растяжение.

По ходу движения воды после насоса устанавливается обратный клапан. Корпус его может быть латунным, из нержавеющей стали или чугуна, запорный элемент — также из различных материалов. По способу присоединения к трубопроводу существуют обратные клапаны с внутренней резьбой (корпус из латуни), фланцевые (чугунные), с наружной резьбой и дополнительно заказываемыми резьбовыми или приварными присоединительными патрубками с накидными гайками, а также клапаны, зажимаемые между двумя ответными фланцами. Последние два типа бывают с чугунными и стальными корпусами. Открытые обратные клапаны обладают определённым гидравлическим сопротивлением, которое рассчитывается при подборе насосов.

До и после насоса необходимо врезать штуцер (короткий отрезок трубы диаметром 15 мм) с трёхходовым клапаном. К нему подсоединяют манометр для контроля исправности и правильной работы насоса. Можно сразу установить оба манометра, но обычно обходятся одним прибором, перенося его по точкам измерения. Также нелишним бывает, при большом диаметре трубы и значительных габаритах насосного узла, спускной кран.

Граница насосного узла — шаровые краны, позволяющие отключить насос или демонтировать весь узел для ремонта или замены.

Диаметр присоединительных патрубков насоса, как правило, меньше диаметра трубопровода, на котором его устанавливают. Распространённой ошибкой является подбор гибких вставок, обратного клапана и даже отключающих кранов по диаметру насоса. По действующим нормам переход нужно делать возле самого насоса, а всю обвязку насос­ного узла принимать по диаметру основной трубы.

В отопительный сезон насос должен постоянно работать. Поломка насоса превращает его в дополнительное препятствие для циркуляции воды. При сильных морозах в отсутствие постоянного контроля выход из строя насоса может даже привести к размораживанию системы. Чтобы избежать такой ситуации, разработаны различные способы резервирования. Более простой и дешёвый — установка сдвоенного насоса, так называемого моноблока. Эти насосы — своеобразные «сиамские близнецы», у них два электродвигателя, соединённых параллельно в одном корпусе, и общий присоединительный трубопровод. Управляемая потоком перекидная крышка препятствует обратному потоку через стоящий насос. Каждый из насосов подключается к электропитанию отдельно. На заводе сдвоенные насосы настраиваются на переменный режим работы. Это означает, что оба насоса работают поочерёдно. Переключение происходит через 24 часа. Если работающий насос выключается из-­за неисправности, сразу включается второй насос.

Можно перевести сдвоенные насосы в резервный режим. Тогда один из насосов будет работать постоянно. Второй через определённые отрезки времени (например, раз в сутки) будет запускаться на короткое время с низкой частотой вращения, чтобы избежать блокировки при длительном простое. Это так называемый автоматический тест резервного насоса. Одновременная работа продолжится всего 40 секунд. Если основной работающий насос отключится из-­за поломки, запустится резервный. Один из насосов можно перевести в режим «Стоп», но тогда управлять их работой придётся вручную.

Недостаток моноблочного насоса в том, что резервируется только электродвигатель. При выходе из строя деталей, отвечающих за перекачку воды, насос всё равно придётся снимать, а для этого отключать котёл и сливать воду. Зимой это не всегда можно сделать. Поэтому самым надёжным способом резервирования является параллельная установка двух одиночных насосов — каждого со своими гибкими вставками, манометрами, обратным клапаном, спускником и отключающими кранами. Управление такими насосами выносят в отдельный щит автоматики.

По ходу воды перед насосным узлом необходимо установить фильтр или грязевик. Общие правила их установки таковы. Косая часть фильтра направляется по движению воды, бочонок грязевика должен находиться снизу. Фильтр устанавливается на горизонтальном участке или на спуске, грязевик — только на горизонтали. Нужное направление воды показывает стрелка на корпусе. Даже если насосов два — основной и резервный — перед ними устанавливается один общий фильтр. Сетка, внутри фильтра задерживает на себе механические примеси, со временем её отверстия забиваются минеральными отложениями. В результате гидравлическое сопротивление фильтра возрастает. Чтобы следить за пропускной способностью и свое­ временно выполнять очистку сетки (или бочонка грязевика), до фильтра по ходу воды также врезают штуцер с трёхходовым клапаном под установку манометра. Второй контрольной точкой при этом служит манометр перед насосом.

Большинство современных циркуляционных агрегатов — с водяным охлаждением ротора. Присоединение по воде может быть и горизонтальным, и вертикальным. Однако, чтобы насос не вышел из строя, вал ротора при монтаже должен располагаться строго горизонтально. Иначе внутри насоса произойдёт завоздушивание, детали перегреются, подшипники останутся без смазки. Также нужно обращать внимание на стрелку, нанесённую на корпус. Она показывает направление движения теплоносителя. Насос, установленный с отступлением от горизонтали, может терять до трети своей производительности. Клеммная коробка также должна быть наверху.

ТЕХНИЧЕСКИЕ ПРАВИЛА УСТАНОВКИ НАСОСОВ. ЭЛЕКТРОБЕЗОПАСНОСТЬ

Контроль над работой насосов выполняется по сигналу датчиков перепада давления, установленных на каждом насосе. В систему автоматизации входят датчики температуры — погружные для теплоносителя и наружные для определения температуры воздуха.

Используются различные режимы управления насосом: автоматический по программе, заданной с базового блока; дистанционный с базового блока; местный с помощью кнопок, установленных на силовом щите.

Нужно помнить, что по действующим нормам надёжность электроснабжения насосного узла должна соответствовать требованиям второй категории потребителей электроэнергии. Насосное оборудование запитывается через собственную панель автоматического переключения на резерв (ЩАП), который устанавливается рядом с вводно-­распределительным устройством жилого дома.

Управление электродвигателями предусматривается как ручное с помощью кнопок, так и автоматическое со щита автоматики, а выбор режима выполняется избирателями управления на дверях распределительных щитов. Все электродвигатели обеспечиваются выключателями безопасности.

Металлические корпуса электрооборудования, нормально не находящиеся под напряжением, должны быть занулены, в качестве зануляющих проводников используются нулевые защитные проводники. Электродвигатель насоса зануляется в клеммной коробке, где к болту заземления подключается нулевая жила провода.

Датчик наружного воздуха ставится вне прямой досягаемости на северном фасаде, выше человеческого роста и на расстоянии не меньше метра от ближайших окон. Корпус датчика желательно выбирать в антивандальном исполнении.

ПРЕИМУЩЕСТВА РЕГУЛИРОВАНИЯ НАПОРА

Когда жилец вручную прикрывает вентиль радиатора или автоматический термостат уменьшает подачу тепла в отопительный прибор, резко увеличивается количество воды в остальных частях системы, то есть в магистралях и стояках. В системе с нерегулируемым насосом сразу возрастает давление, а значит, и шум.

Большинство современных насосов имеют возможность пропорциональной регулировки давления. На практике это означает, что при повышении или понижении температуры воздуха насос изменяет скорость вращения, тем самым уменьшая или увеличивая подачу теплоносителя в систему.

Если же установить насос с частотной регулировкой, то обороты агрегата сразу снизятся, уменьшится потребление электроэнергии и исчезнет шум. То есть при снижении расхода воды гасится избыточный напор насоса, а при увеличении расхода теплоносителя, когда растёт поступление воды в отопительные приборы, напор снова возрастает. При этом увеличивается срок службы насоса. Кроме того, частотные преобразователи обеспечивают плавный пуск электродвигателей и аварийную остановку насосов, выравнивают входное напряжение и выполняют функции автоматики в составе насосных станций.

Частотные преобразователи бывают встроенными в насос, но при необходимости станцию частотного регулирования можно приобрести отдельно. Программируется это устройство вводом команд с кнопок, контроль ввода — по монитору. Эту работу лучше доверить профессионалу. Недостатком использования частотного преобразователя считается увеличение стоимости насосного оборудования.

УСТРОЙСТВО ОБВОДНОЙ ЛИНИИ

Систему отопления частного дома, в которой установлен циркуляционный насос, нужно обезопасить от рисков отключения электричества в самый неподходящий момент, когда на улице мороз. На этот случай желательно иметь источник бесперебойного питания, который позволит насосу проработать несколько часов. Но что делать, если аккумуляторы всё­-таки разрядились, а света по-­прежнему нет?

Решить проблему поможет обводной трубопровод вокруг насоса (его также называют шунт или байпас). У него несколько задач. Рассмотрим их по порядку.

Существуют системы, в которых диаметры труб и площадь нагревательных приборов рассчитаны на естественную циркуляцию теплоносителя при небольших отрицательных температурах. Насос вступает в работу только при похолодании до –10 оС, а основную часть времени вода проходит мимо насоса по байпасу. Это циркуляционно­-подкачивающая схема.

В системах, изначально рассчитанных на принудительную циркуляцию, обводная линия позволяет демонтировать насос для ремонта, не останавливая в целом работы системы. Потому что даже плохая циркуляция лучше, чем никакая.

Наконец, без байпаса невозможно заливать воду в систему и делать подпитку, потому что в обвязке насоса устанавливается обратный клапан, препятствующий подаче воды через обратный трубопровод.

Байпас принимают на диаметр меньше обратного трубопровода и оборудуют запорным краном. Когда работает насос, этот кран закрыт. При отключении насоса перекрывают краны в его обвязке, а байпасную линию, наоборот, открывают.

Можно автоматизировать переключение «насос–байпас», если заменить шаровые краны электромагнитными клапанами и дополнить схему датчиком давления. При отключении насоса давление после него сразу упадёт. Датчик пошлёт импульс прибору автоматики, а тот откроет клапан на байпасе, одновременно перекрыв насосный узел. Когда насос вернётся в работу, произойдёт обратное переключение. Главное, чтобы поток перекрывался плавно, иначе может случиться гидравлический удар.

РАСЧЁТ ЦИРКУЛЯЦИОННОГО НАСОСА

В закрытой системе жидкость движется по замкнутому кругу. При условии, что из системы полностью удалён воздух и она закрыта, на насос не влияет статическое давление. Поэтому существуют всего два параметра, по которым подбирают циркуляционный насос отопления — напор и подача. Напор — это давление, которое необходимо развить, чтобы преодолеть имеющиеся сопротивления. Измеряется он по­-разному — в паскалях, метрах водяного столба, атмосферах, барах — все эти единицы взаимно переводимы. Обозначается буквой H — это условная «высота всасывания» насоса.

Чтобы теплоноситель дошёл до самых удалённых точек системы, напор насоса должен превосходить сумму всех гидравлических потерь. Первое слагаемое — это требуемый напор. Он складывается из сопротивления труб, отопительных приборов и регулирующих кранов. Второе слагаемое — потери в обвязке насоса. Это сопротивление фильтра, обратного клапана, а при наличии — также теплосчётчика и регулирующих клапанов. Третье — свободный напор, который принимается равным двум-­трём метрам водяного столба. В сумме эти величины и дают расчётный напор насоса.

Подача насоса — объём воды, которую он должен перекачать. Подача обычно обозначается как G, а измеряется в тоннах в час или метрах кубических в час. Для определения подачи или, как ещё говорят, расхода насоса, нужно знать тепловую мощность системы — количество тепла, которое вырабатывает котёл. Обозначается буквой Q. Подача насоса — это тепловая мощность, делёная на разность температур подающего и обратного теплоносителя, то есть

G =» (Q)/(T1 — «T2), м3/ч, Q — в киловаттах (T1 — T2) — в градусах Цельсия

Температура подающей воды, как правило, 85–95 оС, обратной — 60–70 оС.

После того, как определены напор и подача, подбор конкретного насоса ведут по номограммам, на которых показана рабочая область именно этого агрегата. По оси абсцисс — подача, по оси ординат — напор. При выборе нельзя ошибиться. Более мощный, чем нужно, насос вызовет шум, перерасход энергии и сам быстро выйдет из строя. При недостатке мощности не будет обеспечена циркуляция по всему контуру.

Нужно помнить, что эксплуатация насоса при минимальной подаче, находящейся ниже рабочей области, вызовет перегрев и остановку насоса. Но и к максимальной точке стремиться нельзя — лучше всего насос работает при КПД порядка 80 %.

Расчёты желательно делать в двух вариантах — для зимнего времени с максимальной температурой воды и для переходного периода. Насос должен одинаково хорошо работать во всех условиях. Установка частотного преобразователя дополнительно этому поможет.

«МОКРЫЙ» И «СУХОЙ» РОТОР

Основные элементы насоса, кроме электродвигателя, — это ротор и вал с рабочим колесом, лопасти которого при вращении создают необходимое давление теплоносителя в трубах. На всасывающей стороне создаётся разрежение, благодаря которому вода устремляется в насос, а на выходе из насоса крыльчатка нагнетает теплоноситель в ограниченном стенками трубы пространстве, и развивается необходимое для циркуляции давление.

По способу охлаждения насосы делят на два вида. Погружные, или «мокрые» насосы называются так потому, что ротор и крыльчатка у них погружены в теплоноситель. Насосы с «мокрым» ротором малошумны — вода глушит звук вращающихся деталей. Они не требуют постоянного обслуживания для смазки и замены прокладок — эту функцию тоже выполняет теплоноситель. Такие насосы невелики по размеру и экономны в потреблении электричества. При этом они обладают возможностью быстро и гибко перестраиваться под изменяющиеся условия работы. В небольших системах отопления частных домов они зарекомендовали себя с лучшей стороны.

В насосах этой конструкции отсутствуют вентилятор, подшипники качения и муфта вала. Эти детали являются тремя из четырёх источников шума любого насосного агрегата. Четвёртый источник шума от насоса — это шум воды, которая протекает через его гидравлическую часть. При подачах, для которых выпускаются насосы с «мокрым» ротором (до 70 м3/ч), шум протекающей через насос воды крайне низок. В интервале мощности двигателя от 20 Вт до 1 кВт уровень звукового давления составляет всего от 22 до 45 дБ. Для сравнения: допускаемый уровень звука в жилой квартире днём — 40 дБ, ночью — 30.

Недостатком «мокророторных» насосов является относительно невысокий КПД — примерно 50 %. Связано это с тем, что статор (неподвижная часть двигателя) «мокрого» насоса изолируется от ротора металлическим стаканом — гильзой, и не существует способа полностью и с гарантией герметизировать это соединение.

Роторы «мокрых» насосов изготавливают из нержавеющей стали или износостойкого пластика, рабочее колесо — из керамики, угольного агломерата или нержавеющей стали. Такие насосы, по опыту эксплуатации, в течение двадцати и более лет работают без капитального ремонта. Конечно, к качеству воды при установке «мокрого» насоса предъявляются повышенные требования. Как минимум должны быть фильтры и тонкой, и грубой очистки, а не только простой грязевик.

Первоначально насосы с «мокрым» ротором рекомендовались для установки только в обратный трубопровод. Сейчас материалы, из которых изготавливаются соприкасающиеся с водой детали, позволяют устанавливать такие насосы и на подаче.

Насосы с «мокрым» ротором не требуют установки до и после себя гибких вставок.

В «сухих» циркуляционных насосах ротор лишь частично погружён в жидкость, а двигатель изолируется от рабочего вала стальными полированными кольцами. При запуске насоса эти кольца начинают вращаться, между ними образуется водяная плёнка, герметизирующая соединение за счёт разницы давления в системе отопления и внешней атмосфере. КПД насосов с «сухим» ротором достигает 80 %. Однако эти насосы настолько шумные, что по действующим нормам их нельзя располагать смежно с жилыми комнатами.

Уплотнительные элементы «сухого» насоса нужно регулярно смазывать, иначе разрушится торцевое уплотнение и внутрь корпуса попадут частички пыли, которые интенсивно притягиваются вращающимся ротором. Скапливаясь на кольцах, пыль может повредить их и привести к разгерметизации насоса.

До и после насоса с «сухим» ротором рекомендуется установка гибких вставок для исключения передачи вибраций и шума.

В настоящее время ведущие компании насосного оборудования практически не уступают друг другу по основным позициям. Разница небольшая — возможно, чуть ниже средние розничные цены одной фирмы, но при этом более развито послепродажное обслуживание у другой и немного ниже энергозатраты двигателей у третьей. Обладатели насосов любой известной марки впервые обращаются в сервис только после десяти–пятнадцати лет непрерывной работы оборудования.

Приточные и возвратные вентиляционные отверстия

: определение, температура и фильтры!

За стенами вашего дома скрывается обширная сеть воздуховодов. Они подключаются практически к каждой комнате вашего дома и обеспечивают проход, по которому воздух может попадать в вашу систему отопления, вентиляции и кондиционирования воздуха и обратно. В этой статье мы обсудим различия между приточными и обратными отверстиями и дадим советы по их обслуживанию.

В чем разница между приточным и возвратным отверстиями?

Если в вашем доме есть центральное отопление и охлаждение, вы заметите два типа вентиляционных отверстий на стенах.

  • Приточные отверстия : Это отверстия, через которые воздух поступает в каждую комнату. Кондиционированный воздух выходит из вашего кондиционера или печи, проходит через воздуховоды и выходит через приточные вентиляционные отверстия. Эти вентиляционные отверстия легко идентифицировать, поскольку они единственные, из которых вы можете почувствовать выход кондиционированного воздуха.
  • Возвратные отверстия : Что такое возвратное отверстие? Эти вентиляционные отверстия всасывают воздух из каждой комнаты и отправляют его обратно в систему кондиционирования или отопления.Обратные отверстия, как правило, больше, чем приточные, и вы не почувствуете выхода воздуха из них. Когда система HVAC доставляет воздух в комнату, она увеличивает давление воздуха в этой комнате. Существуют обратные вентиляционные отверстия для удаления лишнего воздуха.

Сколько мне нужно возвратных вентиляционных отверстий?

Дома, построенные до появления систем центрального кондиционирования, часто имеют модернизированные системы HVAC. Самые ранние системы отопления, вентиляции и кондиционирования воздуха имели большой одиночный возвратный клапан, расположенный где-то посередине дома, но это не самая эффективная система.Вместо этого в каждой комнате должно быть по крайней мере одно обратное вентиляционное отверстие, в идеале — два или три.

Если в вашем доме есть только одно обратное отверстие, это не проблема — убедитесь, что двери в каждой комнате открыты, чтобы воздух мог циркулировать должным образом. Убедитесь, что мебель, драпировки, коврики и т. Д. Не закрывают вентиляционные отверстия. Если вам когда-нибудь понадобится заменить части воздуховодов в вашем доме, это может быть хорошей возможностью установить несколько дополнительных обратных вентиляционных отверстий.

Какой должна быть разница температур между приточным и возвратным отверстиями?

Хотя идеальной температуры, на которую вы должны установить свою систему HVAC, не существует, существует идеальная разница температур между приточным и возвратным воздухом, которая должна составлять от 16 до 22 градусов по Фаренгейту.Эта разница температур составляет испаритель Delta T.

Когда разница температур находится в диапазоне от 16 до 22 градусов, это означает, что ваша система отопления или охлаждения работает нормально. Однако, если он находится за пределами этого диапазона, это означает, что в вашей системе есть несколько проблем.

В случае кондиционирования воздуха испаритель Delta T сообщит вам о производительности змеевика испарителя вашего кондиционера, который является компонентом, отвечающим за охлаждение теплого воздуха в вашем доме.Вот как вы определяете дельту Т для вашей системы.

  1. Получите датчик температуры : Это устройство обеспечит быстрое и точное измерение температуры окружающего воздуха.
  2. Запишите температуру обратного клапана : Возьмите датчик температуры и запишите температуру обратного клапана.
  3. Запишите температуру приточного вентиляционного отверстия : перейдите к трем приточным вентиляционным отверстиям и измерьте их температуру.
  4. Определите среднюю температуру приточных отверстий : сложите три зарегистрированные температуры вместе и разделите на три, чтобы получить среднюю температуру приточных отверстий.
  5. Определить Delta T : Чтобы вычислить Delta T, вычтите температуру возвратного воздуха из средней температуры приточных вентиляционных отверстий.

Если разность температур слишком высока


Если рассчитанная вами дельта Т не находится в диапазоне от 16 до 22 градусов, что-то в вашей системе переменного тока работает неправильно. Если ваша дельта Т выше 22 градусов, есть вероятность, что воздушный поток через вашу катушку слишком слабый, что может быть следствием:

  • Грязный воздушный фильтр или испаритель, который необходимо очистить
  • Воздуховод недостаточного размера
  • Вентилятор настроен на неправильную скорость

Чтобы исправить систему переменного тока с высоким значением Delta T, попробуйте одно из двух следующих решений .

  • Замените воздушный фильтр : Это часто может уменьшить разницу температур.
  • Нанять специалиста: Вы можете попросить профессионала увеличить скорость двигателя вентилятора, очистить змеевик и найти другие потенциальные проблемы с вашей системой.

Если разность температур слишком низкая


Если ваша дельта ниже 16 градусов по Фаренгейту, разница между вашей входящей и исходящей температурой недостаточно высока.Эта проблема может возникнуть по следующим причинам.

  • Недостаточный уровень хладагента
  • Негерметичные обратные клапаны
  • Негерметичные воздуховоды возвратного воздуха
  • Ослабление клапанов компрессора

Когда дело доходит до вышеуказанных проблем, лучше не пытаться устранить их самостоятельно. Вместо этого наймите специалиста, который проверит вашу систему на предмет утечки хладагента и осмотр ваших воздуховодов и клапанов.

Стоит ли вставлять фильтр в обратное отверстие?

Ваша система HVAC, как и любое другое оборудование, лучше всего работает, когда в ней нет пыли и другого мусора.Мусор может накапливаться внутри системы отопления, вентиляции и кондиционирования воздуха, например, в змеевиках испарителя вашего блока переменного тока.

Хотя регулярное техническое обслуживание является хорошей идеей, установка фильтра возвратной вентиляции может помочь предотвратить попадание мусора в ваши возвратные вентиляционные отверстия и обеспечить чистоту воздуха, поступающего в вашу систему HVAC.

Ваша система кондиционирования воздуха также оснащена фильтром, который очищает воздух перед тем, как он попадет в ваше оборудование. Таким образом, фильтр на вашем обратном воздуховоде служит больше как дополнительная мера предосторожности, которая помогает еще больше очистить воздух и продлить срок службы вашей системы HVAC.

Самые надежные профессионалы в области HVAC на юго-востоке Пенсильвании

Наша миссия Summers & Zim’s — обеспечить комфорт домовладельцев в Юго-Восточной Пенсильвании, предлагая широкий спектр услуг по сантехнике, отоплению и охлаждению, включая следующие.

Если вы являетесь жителем Честера или округа Ланкастер и нуждаетесь в каких-либо из вышеперечисленных услуг, не стесняйтесь обращаться к нам через нашу страницу контактов.

Приточно-возвратные вентиляционные отверстия: в чем разница?

В чем разница между приточным и обратным отверстиями?

Заманчиво думать, что ваша печь и кондиционер просто продувают кондиционированным воздухом комнаты в вашем доме.Но это только половина дела; они также высасывают из них воздух.

Приточные отверстия в вашем доме выдувают кондиционированный воздух в ваши комнаты. Этот воздух выходит из вашей системы отопления и охлаждения через воздуховоды и выходит из приточных отверстий. Вы можете легко обнаружить вентиляционные отверстия, потому что они единственные, из которых вы можете почувствовать выход кондиционированного воздуха!

Возвратные отверстия в вашем доме всасывают воздух из ваших комнат в обратные каналы и обратно в систему отопления и охлаждения.Ваши возвратные отверстия обычно больше, чем приточные, и вы не почувствуете, как воздух выходит из них.

Как конструкция воздуховода сочетается с приточными и возвратными отверстиями?

Ваша система отопления и охлаждения должна поддерживать относительно сбалансированную среду внутри ваших воздуховодов. Это означает, что количество воздуха, которое выдувают из ваших воздуховодов, равно количеству воздуха, который в них всасывается.

Одна из самых больших проблем при проектировании воздуховодов в домах — это недостаточное количество приточных или обратных вентиляционных отверстий.В любом случае давление внутри ваших воздуховодов выйдет из равновесия, что сделает ваш дом менее комфортным. Это одна из причин, почему так важно работать с квалифицированным подрядчиком, который проведет точные измерения расхода воздуха в вашем доме перед установкой системы отопления и охлаждения.

Как можно повысить эффективность вентиляционных отверстий подачи и возврата?

Даже если в вашем доме имеется необходимое количество приточных и обратных вентиляционных отверстий, вы можете сделать несколько вещей, чтобы убедиться, что они выполняют свою работу должным образом.Во-первых, убедитесь, что у вас нет мебели или других предметов, которые закрывают вентиляционные отверстия для подачи и возврата. Сохраняя чистоту вентиляционных отверстий, вы оптимизируете поток воздуха и максимально повысите домашний комфорт.

Также не закрывайте вентиляционные отверстия в любых комнатах, даже если вы не слишком часто пользуетесь некоторыми комнатами. Закрытие вентиляционного отверстия увеличит давление внутри вашего воздуховода и приведет к тем же проблемам, что и плохая конструкция воздуховода. Лучшее решение для экономии энергии в помещениях, которые вы нечасто используете, — это разделить эти комнаты на отдельные зоны с помощью системы зонирования.

Если у вас есть какие-либо вопросы о приточных и обратных вентиляционных отверстиях вашего дома, или если вы хотите, чтобы в вашем доме была обслужена или установлена ​​система отопления и охлаждения, свяжитесь с Hyde’s, вашей компанией по кондиционированию воздуха в долине Коачелла, по телефону (760) 360-2202!

Приточные вентиляционные отверстия против обратных вентиляционных отверстий

Если у вас есть центральная система кондиционирования воздуха, вы знаете, что через ваш дом проходит множество воздуховодов. Эти воздуховоды переносят воздух в вашу систему отопления и охлаждения и обратно. Для того, чтобы воздух попадал в воздуховоды и выходил из них, необходимо несколько вентиляционных отверстий.

Воздуховоды и вентиляционные отверстия являются частью системы отопления, вентиляции и кондиционирования (HVAC) здания. Существует два типа: приточных отверстий и обратных отверстий .

Если ваш кондиционер в помещении является сердцем системы, то приточные каналы — это артерии, а обратные каналы — это вены. Помните, что артерии несут кровь от сердца к телу, тогда как вены несут кровь от тела обратно к сердцу.

Приточные и возвратные клапаны

Принадлежности

Приточные отверстия подключены к приточным каналам, по которым кондиционированный воздух поступает в ваши внутренние помещения.

  • Обычно они меньше, чем возвратные вентиляционные отверстия.
  • У большинства вентиляционных отверстий есть жалюзи или планки (расположенные за решеткой), позволяющие направлять воздушный поток.

Вы можете определить вентиляционные отверстия в вашем доме, включив системный вентилятор и подержав перед вентиляционным отверстием лист бумаги или руку. Если выходит воздух, это приточное отверстие.

Возврат

Обратные вентиляционные отверстия подключены к вашим обратным каналам, которые вытягивают воздух из ваших внутренних помещений для подачи в вашу систему отопления и охлаждения.

  • Обычно они больше по размеру.
  • Возвратные вентиляционные отверстия не имеют жалюзи.

Обратные вентиляционные отверстия можно определить, включив системный вентилятор и подняв руку или лист бумаги вверх. Если бумага тянется к вентиляционному отверстию или вы чувствуете всасывающий эффект, это возвратное вентиляционное отверстие.

Никогда не закрывайте приточные или возвратные вентиляционные отверстия!

Когда ваша система отопления или охлаждения включена, она не просто нагнетает кондиционированный воздух — она ​​одновременно высасывает воздух.Если какие-либо из ваших отверстий для возврата или подачи заблокированы, весь баланс системы будет сброшен.

Хотя вы можете думать, что экономите энергию, отключая кондиционирование воздуха в незанятых комнатах, вы можете увеличить давление воздуха в системе воздуховодов, что приведет к большим утечкам в воздуховодах. Закрытие или блокировка вентиляционных отверстий не уменьшит потребление энергии, поскольку система отопления, вентиляции и кондиционирования воздуха всегда работает с одинаковой скоростью.

Предполагается, что обратный и приточный воздуховоды обеспечивают сбалансированную подачу воздуха. Другими словами, в вашу систему HVAC должно входить и выходить равное количество воздуха.Если есть разница в давлении, ожидайте проблем с комфортом и эффективностью. Плохая конструкция воздуховодов и затрудненный воздушный поток могут привести к аналогичным проблемам.

  • Обойдите свой дом и убедитесь, что никакие вентиляционные отверстия не закрыты и не заблокированы мебелью или другими предметами.
  • Улучшите движение воздуха, открывая двери в комнаты в доме.

Узнайте больше о том, почему не следует закрывать вентиляционные отверстия, и о других мифах и выдумках, касающихся систем отопления, вентиляции и кондиционирования воздуха.

Признаки несбалансированного воздуховода

Обратитесь к специалисту по HVAC, если вы заметили какие-либо из следующих симптомов несбалансированных воздуховодов:

  • Горячие и холодные точки или неравномерная температура
  • Непостоянный или несуществующий воздушный поток
  • На воздуховодах образуется конденсат
  • Вы замечаете утечку воздуха из воздуховодов.

Очистка и / или герметизация воздуховодов может быть вашим ответом. Узнайте о нашей фирменной системе воздуховодов PureFlow ™.

Если у вас есть какие-либо вопросы о приточных или обратных каналах, не стесняйтесь спрашивать у чемпиона.

Service Champions известен надежным и своевременным обслуживанием систем отопления и кондиционирования воздуха в районах Ист-Бэй, Саут-Бэй и Сакраменто.

Если у вас есть центральная система кондиционирования воздуха, вы знаете, что через ваш дом проходит множество воздуховодов.Эти воздуховоды переносят воздух в вашу систему отопления и охлаждения и обратно. Для того, чтобы воздух попадал в воздуховоды и выходил из них, необходимо несколько вентиляционных отверстий.

Воздуховоды и вентиляционные отверстия являются частью системы отопления, вентиляции и кондиционирования (HVAC) здания. Существует два типа: приточных отверстий и обратных отверстий .

Если ваш кондиционер в помещении является сердцем системы, то приточные каналы — это артерии, а обратные каналы — это вены. Помните, что артерии несут кровь от сердца к телу, тогда как вены несут кровь от тела обратно к сердцу.

Приточные и возвратные клапаны

Принадлежности

Приточные отверстия подключены к приточным каналам, по которым кондиционированный воздух поступает в ваши внутренние помещения.

  • Обычно они меньше, чем возвратные вентиляционные отверстия.
  • У большинства вентиляционных отверстий есть жалюзи или планки (расположенные за решеткой), позволяющие направлять воздушный поток.

Вы можете определить вентиляционные отверстия в вашем доме, включив системный вентилятор и подержав перед вентиляционным отверстием лист бумаги или руку.Если выходит воздух, это приточное отверстие.

Возврат

Обратные вентиляционные отверстия подключены к вашим обратным каналам, которые вытягивают воздух из ваших внутренних помещений для подачи в вашу систему отопления и охлаждения.

  • Обычно они больше по размеру.
  • Возвратные вентиляционные отверстия не имеют жалюзи.

Обратные вентиляционные отверстия можно определить, включив системный вентилятор и подняв руку или лист бумаги вверх. Если бумага тянется к вентиляционному отверстию или вы чувствуете всасывающий эффект, это возвратное вентиляционное отверстие.

Никогда не закрывайте приточные или возвратные вентиляционные отверстия!

Когда ваша система отопления или охлаждения включена, она не просто нагнетает кондиционированный воздух — она ​​одновременно высасывает воздух. Если какие-либо из ваших отверстий для возврата или подачи заблокированы, весь баланс системы будет сброшен.

Хотя вы можете думать, что экономите энергию, отключая кондиционирование воздуха в незанятых комнатах, вы можете увеличить давление воздуха в системе воздуховодов, что приведет к большим утечкам в воздуховодах. Закрытие или блокировка вентиляционных отверстий не уменьшит потребление энергии, поскольку система отопления, вентиляции и кондиционирования воздуха всегда работает с одинаковой скоростью.

Предполагается, что обратный и приточный воздуховоды обеспечивают сбалансированную подачу воздуха. Другими словами, в вашу систему HVAC должно входить и выходить равное количество воздуха. Если есть разница в давлении, ожидайте проблем с комфортом и эффективностью. Плохая конструкция воздуховодов и затрудненный воздушный поток могут привести к аналогичным проблемам.

  • Обойдите свой дом и убедитесь, что никакие вентиляционные отверстия не закрыты и не заблокированы мебелью или другими предметами.
  • Улучшите движение воздуха, открывая двери в комнаты в доме.

Узнайте больше о том, почему не следует закрывать вентиляционные отверстия, и о других мифах и выдумках, касающихся систем отопления, вентиляции и кондиционирования воздуха.

Признаки несбалансированного воздуховода

Обратитесь к специалисту по HVAC, если вы заметили какие-либо из следующих симптомов несбалансированных воздуховодов:

  • Горячие и холодные точки или неравномерная температура
  • Непостоянный или несуществующий воздушный поток
  • На воздуховодах образуется конденсат
  • Вы замечаете утечку воздуха из воздуховодов.

Очистка и / или герметизация воздуховодов может быть вашим ответом.Узнайте о нашей фирменной системе воздуховодов PureFlow ™.

Если у вас есть какие-либо вопросы о приточных или обратных каналах, не стесняйтесь спрашивать у чемпиона.

Service Champions известен надежным и своевременным обслуживанием систем отопления и кондиционирования воздуха в районах Ист-Бэй, Саут-Бэй и Сакраменто.

3 вещи, которые нужно знать о ваших обратных вентиляционных отверстиях

16 февраля 2017 г. | Блог

Обратные вентиляционные отверстия являются неотъемлемой частью системы HVAC в вашем доме во Франкфорде, штат Делавэр.Они работают, чтобы поддерживать давление в салоне и поддерживать воздух в салоне чистым, поскольку они подают воздух в кондиционер. Вы должны знать, сколько у вас обратных вентиляционных отверстий и где они расположены.

Ваши возвратные вентиляционные отверстия отвечают за давление воздуха

Когда ваша система HVAC нагнетает воздух в ваш дом, это изменяет давление воздуха внутри. Избыточному воздуху нужно куда-то уйти, и это место — возвратное отверстие. Возвратное отверстие обычно больше, чем приточное, потому что воздухоочиститель всасывает воздух в систему отопления, вентиляции и кондиционирования воздуха.

В вашем доме может не хватить обратных вентиляционных отверстий

Дома, построенные до того, как центральное кондиционирование стало обычным явлением, часто имеют модернизированные системы HVAC. Когда подрядчики впервые установили систему кондиционирования воздуха, они сделали одну большую вытяжную вентиляцию где-нибудь в центре дома. Это не самая эффективная система. Наличие нескольких обратных вентиляционных отверстий (в идеале по одному в каждой комнате, но даже два или три лучше, чем один) создает постоянное давление воздуха.

Если у вас есть один возвратный клапан, с вашим домом все в порядке. Держите двери в каждую комнату открытыми, чтобы воздух мог нормально циркулировать.Если вам когда-нибудь понадобится заменить части ваших воздуховодов, возможно, сейчас самое подходящее время, чтобы установить еще пару обратных вентиляционных отверстий.

Вы можете чистить свои возвратные вентиляционные отверстия самостоятельно

Хотя вам никогда не следует чистить большую часть вашей системы HVAC самостоятельно, вы можете очистить обратные вентиляционные отверстия. Снимите металлическую решетку и периодически мойте ее. При замене фильтра возьмите вакуумный шланг и соберите весь мусор, который мог упасть с фильтра. Вы также можете использовать влажную ткань, чтобы очистить внутреннюю часть вентиляционного отверстия.

Когда мы проводим техническое обслуживание систем отопления, вентиляции и кондиционирования воздуха, мы проверяем ваши возвратные вентиляционные отверстия и обсуждаем с вами выбор воздушного фильтра. Если у вас есть вопросы, Custom Mechanical ответит на них. Позвоните нам по телефону 877-696-0808 .

Изображение предоставлено Shutterstock

Конструкция воздуховода 2 — Доступное статическое давление

В части 1 этой серии статей по проектированию воздуховодов я обсуждал основы физики движения воздуха в воздуховодах. Теперь мы собираемся использовать это, чтобы выяснить, как заставить все части работать вместе должным образом.Сначала мы выбираем воздуходувку, которая будет обеспечивать необходимый нам общий воздушный поток. Затем мы проектируем систему воздуховодов, которая будет подавать необходимое количество воздуха в каждую комнату. Для этого нам нужно взять концепцию перепада давления и применить ее к воздуходувкам и воздуховодам.

Подробнее о перепадах давления

Из части 1 этой серии мы знаем, что перепады давления будут происходить по всей системе воздуховодов. Когда воздух попадает в фильтр, змеевик, теплообменник (если есть печь), регистры, решетки, балансировочные заслонки и сами воздуховоды, он теряет давление.Итак, давайте разберемся с этим.

На схеме ниже показаны компоненты нашей системы. AHU — это блок обработки воздуха (или его обработки). Вот где воздуходувка. Воздух из дома возвращается в кондиционер через возвратные каналы. Воздух кондиционируется внутри AHU, а затем отправляется обратно в дом через приточные каналы.

Говоря здесь о давлении, мы не говорим об абсолютном давлении. Мы говорим об относительном давлении. Когда мы говорим о давлении, мы ориентируемся на давление внутри кондиционированного пространства.Это наш ноль.

На обратной стороне нагнетателя давление будет отрицательным. По мере того, как воздух движется из комнаты в обратную решетку и вниз к AHU, давление становится все более и более отрицательным по отношению к комнате. Со стороны подачи давление положительное. По мере того, как воздух движется из AHU через приточные каналы в помещения, давление становится все более и более положительным.

Максимальное положительное и отрицательное давление возникает на устройстве обработки воздуха. Чем дальше мы удаляемся от воздуходувки, тем ближе статическое давление в воздуховодах к нулю или комнатное давление.

Мощность нагнетателя

Чтобы получить определенный поток воздуха, нагнетатель должен работать против определенного давления и с определенной настройкой скорости нагнетателя. Вот таблица от одного юнита.

Скорость нагнетателя устанавливается перемещением проводов к разным ответвлениям. В данном случае их 5 штук. Цифры в верхней строке — это общее внешнее статическое давление (TESP), на которое рассчитан AHU. Это изменение давления в AHU при проталкивании и вытягивании воздуха через воздуховоды.

Обычно вы хотите разработать систему для работы на средней скорости (коснитесь 3 в таблице выше). Таким образом, у вас будет возможность для настройки при вводе системы в эксплуатацию. Кроме того, большинство систем рассчитаны на работу при общем внешнем статическом давлении 0,50 дюйма водяного столба (iwc). Для системы, указанной выше, эти параметры обеспечивают расход воздуха 899 кубических футов в минуту. Если это то число, которое вам нужно, вам просто нужно убедиться, что ваша система рассчитана на работу при 0,5 iwc.

Итак, от обратной (самой отрицательной) стороны AHU к подающей (самой положительной) мы хотим, чтобы общее изменение давления не превышало 0.5 iwc. (Это типичное число. У некоторых воздухообрабатывающих агрегатов рейтинг выше, у некоторых — ниже.) Это общее изменение давления в AHU. Фактическое давление в системе будет зависеть от воздуховодов и других компонентов. Пока мы в этом случае на уровне 0,5 или ниже, мы получим хороший воздушный поток.

Обратите внимание, я сказал здесь изменение давления, а не падение давления. Воздуходувка вызывает повышение давления. Это сила, стоящая за воздушным потоком, поэтому от отрицательной стороны (возвратные каналы) к положительной стороне (приточные каналы) давление возрастает.

Понятно?

Определение доступного статического давления (ASP)

Далее происходит разделение двух видов перепадов давления в системе воздуховодов. Во-первых, нам нужны все внешние падения давления компонентов, которые являются , а не воздуховодами или фитингами. Эти штуки должны входить в систему воздуховодов и, как правило, иметь известные падения давления. Мы вычитаем их из общего числа внешнего статического давления (обычно 0,5 iwc). Что осталось, так это доступное статическое давление (ASP) для воздуховодов и фитингов.

Вот скриншот используемого нами программного обеспечения (RightSuite Universal).

Вверху указано полное внешнее статическое давление. Он вводится автоматически после выбора оборудования, но вы можете изменить числа здесь. В приведенной выше таблице у меня есть разные числа для нагрева и охлаждения, просто чтобы проиллюстрировать влияние на чистую прибыль, но обычно эти числа одинаковы.

Затем вы вводите все перепады внешнего давления. Змеевик и теплообменник здесь равны нулю, потому что змеевик уже включен в общее внешнее статическое давление, потому что он находится внутри AHU, и нет теплообменника, поскольку это тепловой насос.В случае печи у вас будет змеевик, который находится за пределами AHU, и вам нужно будет его добавить. Я не думаю, что у нас когда-либо был проект, в котором теплообменник был бы внешним и его нужно было бы добавить сюда.

Остальные числа, показанные там, являются довольно стандартными, но вы хотите ввести реальные числа, если они у вас есть. Например, если вы используете деревянные решетки, перепады давления будут значительно выше. Но, пожалуйста, не используйте деревянные решетки! Из-за них будет очень сложно получить хороший воздушный поток.

Бюджет вашего воздуховода

После того как вы ввели номинальное внешнее статическое давление и все ваши внешние падения давления, то, что осталось после вычитания падений из номинального давления, — это доступное статическое давление. Вот сколько вам осталось «потратить» на систему воздуховодов.

Подводя итог, где мы находимся сейчас:

  • Воздуходувка создает повышение давления для перемещения воздуха по каналам.
  • Он рассчитан на определенный объем воздушного потока при определенном общем внешнем статическом давлении.
  • Воздуховоды, фитинги и другие компоненты вызывают падение давления.
  • Вычитание перепадов давления для всего, что не является воздуховодами или фитингами, из общего внешнего статического давления дает доступное статическое давление.
  • Доступное статическое давление — это бюджет падения давления, с которым необходимо работать при проектировании воздуховодов.

Теперь перейдем к следующему этапу и спроектируем систему воздуховодов, в которой падение давления будет не более доступного статического давления.Для этого мы определяем размеры воздуховодов и выбираем фитинги, используя так называемую эквивалентную длину. И это тема следующей статьи из этой серии.

Купите руководства ACCA на Amazon *

Другие статьи из серии Duct Design:

Основные принципы проектирования воздуховодов, часть 1

Конструкция воздуховода 3 — Общая полезная длина

Конструкция воздуховода 4 — Расчет скорости трения

Конструкция воздуховода 5 — Определение размеров воздуховодов

Статьи по теме

Две основные причины снижения потока воздуха в воздуховодах

Заболевание гибких протоков не препятствует потоку воздуха

Наука о провисании — гибкий воздуховод и воздушный поток

Секрет эффективного движения воздуха через систему воздуховодов

* Это ссылки Amazon Associate.Вы платите ту же цену, что и обычно, но Energy Vanguard взимает небольшую комиссию, если вы совершаете покупку после перехода по ссылке.

Что такое статическое давление в системе HVAC?

В этом посте мы исследуем часто упускаемый из виду аспект вашей системы HVAC: статическое давление.

Это малоизвестная тема для людей, которые не работают в отрасли. Но, наверное, так и должно быть. Статическое давление влияет на ваш комфорт, ваши счета за электроэнергию и состояние вашей системы отопления и охлаждения в целом.

Мы объясним, что это, признаки проблемы и что может быть причиной.

Что такое статическое давление в системе HVAC?

Статическое давление — это, по сути, сопротивление воздуха. Система вентиляции и кондиционирования с принудительной подачей воздуха с воздуховодом основана на том, что воздух проталкивается через каналы для циркуляции теплого или холодного воздуха. Но этому потоку воздуха препятствуют различные факторы. Итак, сила, толкающая воздух, должна быть сильнее сопротивления.

Невозможно вообще не встретить сопротивления.Но идея состоит в том, чтобы держать это под контролем.

Специалист в области HVAC может учитывать сопротивление воздуха, измеряя падение давления в определенных точках системы. Оттуда они могут сказать вам, есть ли проблема и, надеюсь, что ее вызывает.

Требуется ли эта оценка вашей системе? Посмотрим, заметили ли вы какие-либо из этих проблем.

Три признака высокого статического давления ОВК

Три признака того, что ваша система HVAC имеет высокое статическое давление:

  1. Неравномерный нагрев и охлаждение
  2. Более высокие счета за электроэнергию
  3. Шумная система

Прежде чем мы продолжим, отметим, что эти симптомы не являются исключительными для данной проблемы.Но если вы замечаете все три, то это может быть их причиной.

Неравномерный нагрев и охлаждение

Также известен как наличие горячих и холодных точек, когда в некоторых частях вашего дома температура не достигает желаемой.

Часто это результат слабой циркуляции воздуха в одной или нескольких частях системы. Воздух не проходит через воздуховоды. В результате он не обрабатывает каждую комнату должным образом.

Более высокие счета за энергию

Если вы заметили внезапный рост счетов за коммунальные услуги, проблема может быть в вашей системе HVAC.В любом случае, ваша печь или кондиционер будут делать все возможное, чтобы воздух циркулировал по дому.

И когда он встречает сопротивление, он усерднее выполняет свою работу,

Но эти дополнительные усилия требуют больше ресурсов. Так что в конечном итоге вы платите больше по счетам за электроэнергию.

Независимо от того, является ли эта проблема причиной, вам необходимо проверить ее. Если ваша система будет работать слишком долго, она рано или поздно выйдет из строя.

А если в результате поломки теплообменник треснул, значит, с вашей системой все в порядке.

Шумная система

Воздух прет? Громкие механические звуки? Это признаки проблемы с вашей системой.

Мы упоминали, что ваша печь или кондиционер работает сильнее, когда сопротивление больше. В результате вы можете услышать, что это происходит. Электродвигатель нагнетателя, работающий на максимальной мощности, издает больше шума — точно так же, как педаль газа на полу заставляет рев двигателя вашего автомобиля.

Между тем, вы также можете услышать, как воздух сильнее втягивается и выходит из вентиляционных отверстий. Потому что есть более существенная ничья.

Это как когда вы поджимаете губы и вдыхаете с той же силой, что и обычно. Внезапно вы услышите и почувствуете, как поток воздуха проходит через меньшее отверстие.

Что вызывает высокое статическое давление в воздуховодах?

Три причины высокого статического давления в воздуховодах:

  1. Воздушный фильтр засорен или слишком ограничен
  2. Меньшие размеры возвратов по воздуху
  3. Внутренняя катушка грязная или слишком маленькая

Для проведения измерений вам понадобится профессионал.Затем они могут сообщить вам, есть ли проблема и где она находится.

К сожалению, большинство причин нельзя исправить самостоятельно. Но, по крайней мере, один.

Воздушный фильтр засорен или слишком ограничен

По своей природе фильтр в вашей системе влияет на воздушный поток. Но, когда все работает правильно, это не сильно влияет. И преимущества перевешивают любую потерю давления.

Фильтр действует как экран. Он предотвращает циркуляцию загрязняющих веществ, таких как аллергены, пыль и грязь, через воздуховоды и воздух.

Когда воздух проходит через сетку, фильтр улавливает эти частицы. Но экран также добавляет сопротивления.

Обычно это не проблема. Но, если вы не меняли фильтр несколько месяцев, он забивается.

Значит, сопротивление слишком велико.

Точно так же ваш экран может быть слишком сильным для системы. У среднего фильтра этой проблемы не будет. Но вы можете купить те, у которых более высокий рейтинг MERV, которые улавливают более мелкие частицы, чем обычные.

Меньшие размеры возвратных воздушных судов

Далее, у нас проблемы с вашими воздуховодами. В целом можно сказать, что воздуховоды меньшего размера или неправильно спроектированные будут увеличивать статическое давление.

Но мы также хотели сосредоточиться на одной конкретной проблеме: возврат воздуха в негабаритных помещениях.

Каналы возврата воздуха вытягивают воздух из помещения и направляют его обратно в вашу систему отопления и охлаждения. Это важная часть процесса циркуляции воздуха, о которой часто забывают.

Но если этих доходов недостаточно, у вас возникнет проблема.

Это похоже на дыхание через соломинку: вы можете это сделать, но вам нужно потянуть больше, чтобы получить достаточно воздуха через отверстие гораздо меньшего размера, чем ваш рот или ноздри.

То же самое происходит с вашей системой отопления: ей труднее набирать количество воздуха, необходимое для поддержания циркуляции.

И еще одна проблема с вашим кондиционером. Процесс кондиционирования воздуха включает в себя циркуляцию хладагента через систему в замкнутом контуре.Без достаточного количества возвратного воздуха контур хладагента сбрасывается.

Со временем это может вызвать серьезные проблемы, включая поломки и дорогостоящий ремонт.

Внутренняя катушка грязная или слишком маленькая

Эта проблема немного более техническая, но теоретически она не сильно отличается от предыдущих проблем: если змеевик в вашей системе слишком грязный или слишком маленький, это может вызвать высокое статическое давление.

Начнем с самого компонента.

Змеевик отвечает за процесс теплопередачи.Зимой он нагревает воздух, который затем проходит через ваш дом.

Летом жидкий хладагент, несущий тепловую энергию из вашего дома, испаряется и проходит через змеевик. Змеевик передает тепло, поэтому хладагент может вернуться в жидкое состояние, пройти обратно через систему и привлечь больше тепла.

И, когда есть проблема с катушкой, есть проблема со всей системой.

Змеевик создает сопротивление воздуха — как и в случае с фильтрами, это неизбежно.Но обычно этого недостаточно, чтобы вызвать проблему.

Но если компонент загрязнен, это другое дело. Любая пыль, мусор или другой мусор на змеевике мешает воздуху течь так свободно, как он должен.

Между тем, слишком маленькая катушка вызывает ту же проблему, независимо от того, насколько она чистая. Как и в случае обратных вентиляционных отверстий, если оно недостаточно велико, через него не может проходить достаточное количество воздуха.

Предотвращение распространенных проблем

Вы, возможно, заметили некоторые общие темы в этом последнем разделе: когда одна часть вашей системы HVAC загрязнена или имеет неправильный размер, вы столкнетесь с проблемами.

И эти проблемы повлияют на комфорт вашего дома и, в конечном итоге, дорого обойдутся вам в ремонте и ранней замене.

Если вы подозреваете, что возникла проблема с отоплением или охлаждением, позвоните Джону Чиполлоне или напишите письмо по электронной почте. Мы обслуживаем Хавертаун, Гвинед и Main Line, а также другие города с 50-х годов.

Мы знакомы с различными типами домов в этом районе и общими проблемами, с которыми они сталкиваются. Мы поможем убедиться, что ваша система работает должным образом.

Минимизация потерь энергии в воздуховодах

При строительстве нового дома или при его модернизации решающее значение имеет правильная конструкция системы воздуховодов. В последние годы в энергосберегающих конструкциях стремятся включить воздуховоды и системы отопления в кондиционируемое пространство.

Эффективные и хорошо спроектированные системы воздуховодов правильно распределяют воздух по всему дому без утечек, чтобы поддерживать во всех комнатах комфортную температуру. Система должна обеспечивать сбалансированный приток и возврат для поддержания нейтрального давления в птичнике.

Даже хорошо загерметизированные и изолированные воздуховоды будут протекать и терять немного тепла, поэтому во многих новых энергоэффективных домах система воздуховодов размещается в кондиционируемом пространстве дома. Самый простой способ добиться этого — спрятать воздуховоды в подвесных потолках и в углах комнат. Воздуховоды также могут быть расположены в герметичном и изолированном желобе, выходящем на чердак или встроенном в фальшполы. В обоих последних случаях необходимо соблюдать осторожность во время строительства, чтобы подрядчики не использовали желоба для проводов или других инженерных коммуникаций.

В любом случае должны использоваться настоящие воздуховоды — желоба и полости в полу не должны использоваться в качестве воздуховодов. Независимо от того, где они установлены, воздуховоды должны быть хорошо герметизированы. Хотя воздуховоды могут быть сконфигурированы различными способами, конфигурации «ствол и ответвление» и «радиальная» конфигурация воздуховодов наиболее подходят для воздуховодов, расположенных в кондиционируемых помещениях.

Системы воздуховодов для возврата воздуха можно настроить двумя способами: в каждой комнате может быть обратный канал, который отправляет воздух обратно в оборудование для обогрева и охлаждения, или же решетки возврата могут быть расположены в центральных местах на каждом этаже.В последнем случае необходимо установить либо решетки, чтобы воздух мог выходить из закрытых помещений, либо можно установить короткие «перемычки» для соединения вентиляционного отверстия в одной комнате с другой, позволяя воздуху возвращаться к центральным возвратным решеткам. . Поднутрения дверей помогают, но их обычно недостаточно для возврата воздуха.

Вы можете выполнить простую проверку достаточной пропускной способности возвратного воздуха, выполнив следующие действия:

  1. Закройте все внешние двери и окна
  2. Закройте все внутренние двери комнат
  3. Включите центральный кондиционер
  4. «Трещины» внутренние двери 1 по одному и наблюдайте, закрывается ли дверь или открывается «сама по себе».»(Закрывается он или открывается, будет зависеть от направления воздушного потока, управляемого устройством обработки воздуха.) Помещения, обслуживаемые воздушными дверями, имеют ограниченный поток возвратного воздуха и нуждаются в сбросе давления, как описано выше.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *